U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, B.E. - Semester End Examination; May - 2022

Engineering Mathematics - I

(Common to all Branches)

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1 Find the radius of curvature of the functions.
- CO2 Obtain Taylor's series of the functions.
- CO3 Explain the concept of partial differentiation.
- *CO4 Derive reduction formula of the functions.*

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.					
Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
I a.	Find the angle between radius vector and the tangent to the curve	2	L1	CO1	PO1
	$r=2\sin\theta$.				
b.	State the Lagrange's mean value theorem.	2	L1	CO2	PO1
c.	If $u = 2hxy + x^2 + 2y^2 + 3xy^3$, find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ where h is a constant.	2	L1	CO3	PO1
d.	Write reduction formula for $\int_0^{\pi/2} \sin^n x dx$.	2	L1	CO4	PO1
e.	Verify the following differential equation for exactness,	2	т 1	005	DO 1
	$(2xy + y - \tan y)dx + (x^2 - x \tan^2 y + \sec^2 y)dy = 0.$	2	LI	CO5	POI
II : PART - B		90			
	UNIT - I	18			
1 a.	i) Find the angle between the curves $r = a(1 + \sin \theta)$ and $r = a(1 - \sin \theta)$.	9	L1	CO1	PO1
	ii) Obtain the Pedal equation of the curve $r = a e^{m\theta}$, $m - \text{constant}$.				
b.	Find the radius of the curvature for the Folium of De-Cartes $x^3 + y^3 = 3axy$ at the point $(3\frac{a}{2}, 3\frac{a}{2})$ on it.	9	L2	CO1	PO2
c.	Find the evolutes of the parabola $y^2 = 4ax$ by considering the parametric equations $x = at^2$, $y = 2at$.	9	L2	CO1	PO1
		10			
	UNIT - II	18			
2 a.	State the Cauchy's mean value theorem. Verify it for the functions,				
	$f(x) = \frac{1}{x^2};$ $g(x) = \frac{1}{x}$ in $[a, b], b > a > 0.$	9	L2	CO2	PO1

P18MA11

Page No... 2

- Obtain the Taylor's series expansion of $f(x) = \log \cos x$ about the point
 - $x = \frac{\pi}{3}$ upto the fourth degree term.

9 L2 CO2 PO2

- Evaluate the following:
 - i) $\lim_{x \to 0} \left(\frac{\tan x}{x} \right)^{\frac{1}{x}}$
- ii) $\lim_{x\to 0} (\cot x)^{\tan x}$

9 L2 CO2 PO1

UNIT - III

18

- State the Euler's theorem. Applying Euler's theorem show that,
 - $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\sin 2u$ for the function $u = \tan^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$.

9 L2 CO3 PO1

b. If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$ show that,

9 L3 CO3 PO2

- i) $xu_x + yu_y = \sin 2u$ ii) $x^2u_{xx} + 2xyu_{yy} + y^2u_{yy} = \sin 4u \sin 2u$
- c. If $\vec{F} = (2xy^2 + yz)\hat{i} + (2x^2y + xz + 2yz^2)\hat{j} + (2y^2z + xy)\hat{k}$, then show that
- 9 L3 CO3 PO2

 \overrightarrow{F} is a conservative force field. Also find the scalar potential for \overrightarrow{F} .

UNIT - IV

18

- formula for $\int \cos^n x dx$ 4 a. Obtain Reduction deduce $\int_{0}^{\pi/2} \cos^{n} x \, dx$. Also evaluate $\int_{0}^{\pi/2} \cos^{7} x \, dx$.
- 9 L2 CO4 PO1
- Find the volume of the tetrahedron bounded by the planes x = 0, y = 0, z = 0, $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.
- 9 L3 CO4 PO2
- Trace the curve $y^2(a-x) = x^2(a+x)$, a > 0, which is a strophoid.
- 9 L2 CO4 PO2

18

- 5 a. i) Solve $(y\cos x + \sin y + y)dx + (\sin x + x\cos y + x)dy = 0$.
 - ii) Solve $(x^2 3xy + 2y^2)dx + x(3x 2y)dy = 0$.

- 9 L2 CO4 PO1
- b. i) Find the orthogonal trajectories of the family of the curves $y^2 = cx^3$ where c is the parameter.
- 9 L2 CO4 PO2
- ii) Obtain orthogonal trajectories of the polar curve $r^2 = a^2 \cos 2\theta$.
- If the temperature of the air is 30°C and a metal ball cools from 100°C to 70°C in 15 minutes, find how long will it take for the metal ball to reach a L3 CO4 PO2 temperature of 40°C.