U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Semester End Examination; March / April - 2022 Transform Calculus, Fourier Series and Numerical Techniques
Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Apply forward, backward difference formulae and central differences formulae in solving interpolationextrapolation problems in engineering field.
CO2: Numerical differentiation and integration rules in solving engineering where the handlings of numerical methods are inevitable.
CO3: Apply the knowledge of periodic function, Fourier series, complex Fourier series, Fourier sine/cosine series of a function valid in different periods. Analyze engineering problems arising in control theoryfluid flow phenomena using harmonic analysis.
CO4: Understand complex/infinite Fourier transforms Fourier sine and Fourier cosine transforms with related properties. Analyze the engineering problems arising in signals and systems, digital signal processing using Fourier transform techniques. Define Z-transforms\& find Z-transforms of standard functions to solve the specific problems by using properties of Z-transforms. Identify and solve difference equations arising in engineering applications using inverse Z-transforms techniques.
CO5: Define Partial Differential Equations (PDE's), order, degree and formation of PDE's and, to solve PDE's by various methods of solution. Explain one - dimensional wave and heat equation and Laplace's equation and physical significance of their solutions to the problems selected from engineering field.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of 18 marks from each unit.
Q. No.

Questions

I : PART - A
I a. Write the Bessel's formula upto the fourth order differences.
b. The first order derivative using forward interpolation formula at the point x_{0} upto fourth order is equal to?
c. If $f(x)$ is an odd function over the interval $(-l, l)$, then write the Euler's formulae for $f(x)$.
d. The Z-transform of a^{n} and $e^{a n}$ is equal to?
e. Verify that $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$ is a complete solution of the first order PDE $p q=4 x y z$.

II : PART - B

UNIT - I
1 a. Define extrapolation. From the following table, find the number of students who obtained marks between 40 and 45 .
$9 \quad \mathrm{~L} 2 \mathrm{CO} 1 \mathrm{PO} 2$

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of Students	31	42	51	35	31

b. Certain corresponding values of x and $\log _{10}(x)$ are (300, 2.4771), (304, 2.4829), (305, 2.4843) and (307, 2.4871). Find;
i) $\log _{10}(301)$ and ii) $\log _{10}(306)$, by using Lagrange interpolation formula.
c. Use Gauss's forward formula to evaluate y_{30}, given that $y_{21}=18.4708$, $y_{25}=17.8144, y_{29}=17.1070, y_{33}=16.3432$ and $y_{37}=15.5154$.
UNIT - II

L2 CO1 PO1

2 a. Find $f^{\prime}(10)$ from the following data:

x	3	5	11	27	34
$f(x)$	-13	23	899	17315	35606

b. Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$, by using, i) Trapezoidal rule and ii) Simpson's $\left(\frac{3}{8}\right)^{\text {th }}$ rule.
$9 \quad \mathrm{~L} 2 \mathrm{CO} 2 \mathrm{PO} 1$
$9 \quad \mathrm{~L} 2 \mathrm{CO} 2 \mathrm{PO} 2$
c. Evaluate: $\int_{4}^{5.2} \log _{e} x d x$ using Simpson's $\left(\frac{1}{3}\right)^{r d}$ rule and Weddle's rule, taking 7 ordinates.

UNIT - III

3 a. Find the Fourier series for the function $f(x)=|x|$ in $-\pi \leq x \leq \pi$. Hence deduce that $\frac{\pi^{2}}{8}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$.
b. Obtain the Fourier series for the function $f(x)=\left\{\begin{array}{cl}\pi x & \text { in } 0 \leq x \leq 1 \\ \pi(2-x) & \text { in } 1 \leq x \leq 2\end{array}\right.$
c. A function $f(x)$ of period 2π is specified by the following table.

x	0	$\frac{\pi}{3}$	$\frac{2 \pi}{3}$	π	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$	2π
$f(x)$	7.9	7.2	3.6	0.5	0.9	6.8	7.9

Obtain the Fourier series of $f(x)$ upto the first harmonic.

UNIT - IV

4 a. Find the Fourier transform of $f(x)=\left\{\begin{array}{cll}1-|x|, & \text { for } & |x| \leq 1 \\ 0, & \text { for } & |x|>1\end{array}\right.$. Hence evaluate $\int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t$.
b. Find the Fourier sine and cosine transform of $e^{-a x}$ where $a>0$.
c. Obtain the Z -transform of $\operatorname{coshn} \theta$ and $\operatorname{sinhn} \theta$.

UNIT - V
L2 CO4 PO1

5 a. i) Form a partial differential equation by eliminating arbitrary function from $z=y^{2}+2 f\left(\frac{1}{x}+\log y\right)$.
ii) Find the general solution of the equation $y z \frac{\partial z}{\partial x}+z x \frac{\partial z}{\partial y}=x y$.
b. Use the method of separation of variables to solve $\frac{\partial z}{\partial x}=2 \frac{\partial z}{\partial y}+z$, given 9 $z(x, 0)=6 e^{-3 x}$.
c. Find the various possible solutions of the two dimensional Laplace's equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.

