U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Seventh Semester, B.E. - Semester End Examination; February - 2022 Graph Theory, Number Theory and Analysis

Time: 3 hrs Max. Marks: 100

Note: I) **PART - A** is compulsory. **Two** marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs
I a.	If 0.7143 is an approximate value of $\frac{5}{7}$ then find E_a .	2	L1	CO1	PO1
b.	State Division algorithms.	2	L1	CO2	PO1
c.	State Wilson's theorem.	2	L1	CO3	PO1
d.	Define sub-graph with example.	2	L1	CO4	PO1
e.	Define colouring of a graph. Give an example.	2	L1	CO5	PO1
	II : PART - B				
	UNIT - I	18			
1 a.	Find the real root of the equation $x^3 - 4x - 9 = 0$ correct to three	9	L2	CO1	PO1
	decimal places by using secant method.				
b.	Use the Birge-Vieta method to find a real root correct to three decimals				
	of the equations $x^3 - 11x^2 + 32x - 22 = 0$, $p = 0.5$. Find the deflated	9	L2	CO1	PO1
	polynomial in each case.				
c.	Apply the Graeffe's root squaring method to the find the real roots of	9	L3	CO1	DO2
	the equation, $x^3 - 2x + 2 = 0$.	9	L3	COI	FO2
	UNIT - II	18			
2 a.	i) Prove that square of any integer is of the form $4k$ or $4k+1$.				
	ii) Show that $\frac{n(n+1)(2n+1)}{6}$ is an integer, $n \ge 1$.	9	L3	CO2	PO2
b.	Find the gcd (256, 1166) and express, it in the form $256x + 1166y$	0	1.0	002	DO 1
	where $x, y \in z$.	9	L2	CO2	POI
c.	i) State fundamental theorem of arithmetic.	0		G02	D02
	ii) Solve the linear Diophantine equation, $172x + 20y = 1000$.	9	L3	CO3	PO3
	UNIT - III	18			
3 a.	Solve the linear congruence $18x \equiv 30 \pmod{42}$.	9	L2	CO3	PO2
b.	Solve by using Chinese Remainder theorem,				
	$x \equiv 5 \pmod{11}, \ x \equiv 14 \pmod{29}, \ x \equiv 15 \pmod{31}.$	9	L3	CO3	PO3
_		0	1.0	CO2	DO2
c.	Verify Wilson's theorem when $p = 13$.	9	L2	CO3	PU2

UNIT - IV

18

4 a. Define isomorphisms of graphs. Show that the following two graph are isomorphic:

9 L2 CO4 PO1

Frg 40

- b. Define induced sub-graph, spanning sub-graph with example.
- 9 L2 CO4 PO1
- c. i) Determine the adjacency matrix and incidence matrix of K_4 .
- 9 L3 CO4 PO3

ii) Find the energy of $K_{1,3}$.

UNIT - V

18

- 5 a. Define chromatic number. Find the chromatic polynomial for the cycle of length $4(C_4)$. Find the chromatic number also.
- 9 L2 CO5 PO2
- b. Schedule a time table for four teachers and five subjects, given the data:

Periods P	N_1	N_2	N ₃	N ₄	N_5
T_1	2	0	1	1	0
T_2	0	1	0	1	0
T ₃	0	1	1	1	0
T ₄	0	0	0	1	1

- 9 L3 CO5 PO2
- c. Explain dominating set and domination number of a graph with an example.
- 9 L2 CO5 PO2

* * * *