U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)

Seventh Semester, B.E. - Semester End Examination; February - 2022 Graph Theory, Number Theory and Analysis

Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of 18 marks from each unit.
Q. No.

Questions
 I : PART - A
 10

I a. If 0.7143 is an approximate value of $\frac{5}{7}$ then find E_{a}.
2
L1 CO1 PO1
b. State Division algorithms.
c. State Wilson's theorem.

2 L1 CO3 PO1
d. Define sub-graph with example.

2 L1 CO4 PO1
e. Define colouring of a graph. Give an example.

2 L1 CO5 PO1

II : PART - B
 90

UNIT - I

1 a . Find the real root of the equation $x^{3}-4 x-9=0$ correct to three decimal places by using secant method.
b. Use the Birge-Vieta method to find a real root correct to three decimals of the equations $x^{3}-11 x^{2}+32 x-22=0, p=0.5$. Find the deflated $9 \quad$ L2 CO1 PO1 polynomial in each case.
c. Apply the Graeffe's root squaring method to the find the real roots of the equation, $x^{3}-2 x+2=0$.

UNIT - II

2 a. i) Prove that square of any integer is of the form $4 k$ or $4 k+1$.
ii) Show that $\frac{n(n+1)(2 n+1)}{6}$ is an integer, $n \geq 1$.
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 2 \mathrm{PO} 2$
b. Find the $\operatorname{gcd}(256,1166)$ and express, it in the form $256 x+1166 y$ where $x, y \in z$.
c. i) State fundamental theorem of arithmetic.
ii) Solve the linear Diophantine equation, $172 x+20 y=1000$.

> UNIT - III

3 a. Solve the linear congruence $18 x \equiv 30(\bmod 42)$.
$9 \quad \mathrm{~L} 2 \mathrm{CO} 3 \mathrm{PO} 2$
b. Solve by using Chinese Remainder theorem,
$x \equiv 5(\bmod 11), x \equiv 14(\bmod 29), x \equiv 15(\bmod 31)$.
c. Verify Wilson's theorem when $p=13$.
$9 \quad \mathrm{~L} 2 \mathrm{CO} 3 \mathrm{PO} 2$

UNIT - IV
4 a . Define isomorphisms of graphs. Show that the following two graph are isomorphic:

Fig 40

b. Define induced sub-graph, spanning sub-graph with example.
c. i) Determine the adjacency matrix and incidence matrix of K_{4}.
ii) Find the energy of $K_{1,3}$.

UNIT - V
5 a . Define chromatic number. Find the chromatic polynomial for the cycle of length $4\left(\mathrm{C}_{4}\right)$. Find the chromatic number also.
b. Schedule a time table for four teachers and five subjects, given the data:

Periods P	N_{1}	$\mathrm{~N}_{2}$	$\mathrm{~N}_{3}$	$\mathrm{~N}_{4}$	$\mathrm{~N}_{5}$
$\mathrm{~T}_{1}$	2	0	1	1	0
$\mathrm{~T}_{2}$	0	1	0	1	0
$\mathrm{~T}_{3}$	0	1	1	1	0
$\mathrm{~T}_{4}$	0	0	0	1	1

c. Explain dominating set and domination number of a graph with an example.

