P18	ME33	Ρα	ge No 1			
	U.S.N					
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Mechanical Engineering Semester End Examination; March / April - 2022 Fluid Mechanics						
Tim	e: 3 hrs	Max. M	arks: 100	•		
CO1 CO2 CO3	Course Outcomes Students will be able to: Explain fluid properties like density, weight density, specific volume, specific gravity tension. Solve problems on viscosity and surface tension. E Derive Pascal's law and fundamental law of hydrostatics and Explain buoyancy and E Describe the types of fluid flow and solve problems on continuity equation, Euler's of Bernoulli's equation. E Explain boundary layer concept and define hydraulic gradient line and total energy later of the solution.	centre of buc equation of n	oyancy.			
<i>CO5</i>	 Derive Hagen-Poiseuille equation and apply dimensional analysis technique to relations. PART - A is compulsory. Two marks for each question. 		ensionless			
11000	II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks	s from each u	nit.			
Q. No.			BLs COs	PO		
I a.	I : PART - A State the Newton's law of viscosity with mathematical expression.	10 2	L1 CO1	PO		
b.	Define the terms: i) Buoyancy and ii) Centre of Buoyancy.	2	L1 CO2	PO		
с.	What is the difference between steady flow and uniform flow?	2	L1 CO3			
d.	Define: i) Drag force and ii) Lift force.	2	L1 CO4	PO		
e.	State the Buckingham's II-theorem.	2	L1 CO5			
	II : PART - B	90				
1		18				
1 a.	Define the following Fluid properties with units:	0	11 001	DO		
	i) Weight density ii) Viscosity iii) Density	9	L1 CO1	PO		
1.	iv) Specific volume v) Kinematic viscosity vi) Surface Tension	0		DO		
b.	State and prove Pascal's Law.	9	L2 CO1	PO		
c.	A 15 cm diameter vertical cylinder rotates concentrically inside another cylin					
	of diameter 15.10 cm. Both cylinders are 25 cm high. The space between cylinders is filled with a liquid whose viscosity is unknown. If a torque		L3 CO1			
	12 Nm is required to rotate the inner cylinder at 100 rpm, determine the viscos		LJ COI	FU.		
	of the fluid.	Sity				
	UNIT - II	18				
2 a.	An inverted U-tube manometer is connected to two horizontal pipes A and					
	through which water is flowing. The vertical distance between the axes of th	iese				
	pipes is 30 cm. When an oil of specific gravity 0.8 is used as a gauge fluid,	the		DO		
	vertical heights of water columns in the two limbs of the inverted manome	9 eter	L3 CO2	PU		
	(when measured from the respective centre lines of the pipes) are found to	be				
	same and equal to 35 cm. Determine the difference of pressure between the pip	bes.				

Contd... 2

P18	P18ME33		ge No 2
b.	Derive an expression for total pressure force and center of pressure for vertical	9	L2 CO2 PO1
	plane surface submerged in a liquid.		
c.	A wooden cylinder of specific gravity 0.6 and circular in cross-section is required		
	to float in oil of specific gravity 0.90. Find the L/D ratio for the cylinder to float	9	L3 CO2 PO2
	with its longitudinal axis vertical in oil, where L is the height of cylinder and D is		
	its diameter.		
	UNIT - III	18	
3 a.	Derive an expression for continuity equation for a three-dimensional steady incompressible flow.	9	L2 CO3 PO1
b.	Derive Euler's equation of motion for a steady flow and deduce Bernoulli's equation with assumptions.	9	L2 CO3 PO1
c.	The inlet and throat diameters of a horizontal venturimeter are 30 cm and 10 cm		
	respectively. The liquid flowing through the meter is water. The pressure intensity	0	
	at inlet is 13.734 N/cm ² while the vaccum pressure head at the throat is 37 cm of $\overline{1}$	9	L3 CO3 PO2
	mercury. Find the rate of flow. Assume that 4% of the differential head is lost		
	between the inlet and throat. Find also the value of C_d for the venturimeter.		
	UNIT - IV	18	
4 a.	Define the following:		
	i) Stream-lined body ii) Boundary Layer thickness	9	L1 CO4 PO1
	iii) Displacement thickness iv) Momentum thickness v) Energy thickness		
b.	Experiments were conducted in a wind tunnel with a wind speed of		
	50 km/hour on a flat plate of size 2 m long and 1 m wide. The density of air is		
	1.15 kg/m ³ . The coefficients of lift and drag are 0.75 and 0.15 respectively.	9	L3 CO4 PO3
	Determine;	,	15 001105
	i) The lift force ii) Drag force iii) The resultant force		
	iv) Direction of resultant force v) Power exerted by air on the plate		
c.	Derive Darcy-Weisbach formula to calculate the frictional head loss in pipe in	9	L2 CO4 PO1
	terms of friction factor.	9	L2 C04 F01
	UNIT - V	18	
5 a.	Derive Hagen-Poiseuille equation starting for head loss due to friction	0	
	in a pipe.	9	L2 CO5 PO1
b.	Derive an expression for thrust ' T ' developed by a propeller which depends upon		
	the angular velocity ' ω ', speed of advance 'V', diameter 'D', dynamic viscosity		
	' μ ', mass density ' ρ ', speed of the sound in the medium 'C' using Buckingham's	9	L2 CO5 PO2
	П-theorem.		
c.	Define the following dimensionless numbers giving their significances:		
	i) Reynold's number ii) Euler's number iii) Mach number	9	L1 CO5 PO1