\square
P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E. - Mechanical Engineering Semester End Examination; March / April - 2022 Basic Thermodynamics

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Understand the basic concepts and definitions used in engineering thermodynamics.
CO2: Apply the first laws of thermodynamics and the concepts of thermodynamics to basic energy systems.
CO3: Understand the properties of pure substances.
CO4: Understanding of the second law of thermodynamics and analysis in different applications.
CO5: Calculate entropy for various simple real life systems.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
III) Use of thermodynamic data handbook and steam tables are permitted.

Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs
I a.	List out the similarities between Work and Heat.	2	L2	CO1	PO1
b.	Define Enthalpy and write down its significance.	2	L1	CO 2	PO1
c.	Define sensible heat and latent heat of pure substance.	2	L1	CO 3	PO1
d.	What do you mean by thermal reservoir, source and sink?	2	L2	CO 4	PO1
	Express the entropy with a neat sketch in terms of temperature and change in heat.	2	L2	CO5	PO1

II : PART - B	90
UNIT - I	18

1 a. i) Show that Work and Heat are path functions.
ii) Obtain expressions for displacement work during adiabatic process.
iii) Explain, what do you understand by thermodynamic equilibrium?
b. A platinum wire is used as resistance thermometer. The wire resistance was found to be 10 ohm and 16 ohm at ice point and steam point respectively and 30 ohm , at boiling point of $444.6^{\circ} \mathrm{C}$. Find the resistance of the wire at $800^{\circ} \mathrm{C}$, if the wire varies with temperature by the relation $R=R_{0}\left[1+A t+B t^{2}\right]$.
c. i) A system consists of a cylinder and a piston machine. The external normal load is applied to the piston is given by,
$F=(-150+100 x) \mathrm{kN}$ where x is the distance from the closed end of the cylinder to piston. How much work is achieved when piston moves from $x=2.5$ to $x=5 \mathrm{~m}$.
ii) A gas has an initial volume $0.4 \mathrm{~m}^{3}$ and expands to a final volume of $0.8 \mathrm{~m}^{3}$. Initial pressure of gas is 0.1 MPa . Find the work done during isothermal process and also find work done during constant volume process.

UNIT - II

2 a . A piston cylinder machine contain a fluid system which passes through a complete cycle, the sum of all heat transfer is -284 kW . The system complete 100 cycles per minutes. Complete the following table showing the method of each items and compute the rate of work output in kW .

Process	$Q(\mathrm{~kJ} / \mathrm{min})$	$W(\mathrm{~kJ} / \mathrm{min})$	$\Delta E(\mathrm{~kJ} / \mathrm{min})$
$\mathrm{a}-\mathrm{b}$	0	2170	-
$\mathrm{b}-\mathrm{c}$	21000	0	-
$\mathrm{c}-\mathrm{d}$	-2100	-	-36600
$\mathrm{~d}-\mathrm{a}$	-	-	-

b. Apply the steady flow energy equation with neat sketch for change in enthalpy.
i) Boiler
ii) Air compressor
iii) Steam Nozzle
c. A centrifugal air compressor compresses $5.7 \mathrm{~m}^{3} / \mathrm{min}$ of air from 85 kPa to 650 kPa . The initial specific volume is $0.3 \mathrm{~m}^{3} / \mathrm{kg}$ the final specific volume is $0.1 \mathrm{~m}^{3} / \mathrm{kg}$. The suction inlet diameter is 0.1 m and that of discharge line is 0.625 m . Determine;
i) Change in flow work
ii) Mass flow rate
iii) Velocity change

UNIT - III

3 a. With a neat sketch, explain the bucket calori meter.
b. Steam initially at 1.5 MPa and $350^{\circ} \mathrm{C}$ expands to condenser pressure 0.08 bar. The expansion in a turbine, is reversible and isentropic. Find the dryness fraction at exit of the turbine by analytical method using steam table.
c. The following observations were taken with a separating and a throttling calorimeter:
Water separated $=2 \mathrm{~kg}$, steam discharged from the throttling calorimeter $=20.5 \mathrm{~kg}$, temperature of steam after throttling $=110^{\circ} \mathrm{C}$, initial pressure $=12$ bar absolute, barometer reading $=760 \mathrm{~mm}$ of Hg , final pressure $=5 \mathrm{~mm}$ of Hg . Find the quality of steam supplied.

UNIT - IV

4 a. i) Explain Carnot cycle with PV and TS diagram.
ii) Define Perpetual Motion Machine Kind-II (PMMK-2) and explain the same.
b. Prove that Kelvin-plank and Clausius statements of second law of thermodynamics are equivalent.
c. A reversible heat engine operates between two reservoirs maintaining at temperature of $700^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. The engine drives a reversible refrigerator which operates between reservoir maintaining at temperature of $50^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$. The heat transfer to the engine is 2500 kJ and network output of combined engine refrigerator is 400 kJ . Determine the heat transfer to refrigerant and net heat transfer to the reservoir at $50^{\circ} \mathrm{C}$.

UNIT - V
5 a. i) State and prove Clausius inequality.
ii) Define Dalton Law, Gibbs law and Amagots law for ideal gas and gas mixtures.
b. Prove that change in entropy for polytropic process with usual notations $S_{2}-S_{1}=C_{V}\left(\frac{\eta-\gamma}{\eta-1}\right) \ln \frac{T_{2}}{T_{1}}$.

9 L2 CO5

9 L3 CO5
ii) Work done
iii) Heat transferred
iv) Change in entropy

Take for Nitrogen $C_{P}=1.04 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ and $C_{V}=0.7432 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$

