P

P18M	E35			Page I	Vo 1		
	U.S.N						
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Mechanical Engineering Semester End Examination; March / April - 2022 Basic Thermodynamics							
Time: 3 hrs Max. Marks: 100							
Course Outcomes The Students will be able to: CO1: Understand the basic concepts and definitions used in engineering thermodynamics. CO2: Apply the first laws of thermodynamics and the concepts of thermodynamics to basic energy systems. CO3: Understand the properties of pure substances. CO4: Understanding of the second law of thermodynamics and analysis in different applications. CO5: Calculate entropy for various simple real life systems. Mote: I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit. III) Use of thermodynamic data handbook and steam tables are permitted.							
Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs		
I a.	List out the similarities between Work and Heat.	2	L2	CO1	PO1		
b.	Define Enthalpy and write down its significance.	2	L1	CO2	PO1		
с.	Define sensible heat and latent heat of pure substance.	2	L1	CO3	PO1		
d.	What do you mean by thermal reservoir, source and sink?	2	L2	CO4	PO1		
e.	Express the entropy with a neat sketch in terms of temperature and						
	change in heat.	2	L2	CO5	PO1		
	II : PART - B	90					
	UNIT - I	18					
1 a.	i) Show that Work and Heat are path functions.	3	L2	CO1	PO1		
	ii) Obtain expressions for displacement work during adiabatic process.	3	L3	CO1	PO1		
	iii) Explain, what do you understand by thermodynamic equilibrium?	3	L2	CO1	PO1		
b.	A platinum wire is used as resistance thermometer. The wire resistance was found to be 10 ohm and 16 ohm at ice point and steam point respectively and 30 ohm, at boiling point of 444.6°C. Find the resistance of the wire at 800°C, if the wire varies with temperature by the relation $R = R_0[1 + At + Bt^2]$.	9	L3	CO1	PO2		
c.	i) A system consists of a cylinder and a piston machine. The external normal load is applied to the piston is given by, F = (-150 + 100x) kN where x is the distance from the closed end of the cylinder to piston. How much work is achieved when piston	6	L3	CO1	PO2		

moves from x = 2.5 to x = 5 m.

Contd... 2

P18 M	P18ME35				Page No 2			
	ii) A gas has an initial volume 0	$.4 \text{ m}^3$ and exp	ands to a fina	l volume				
	of 0.8 m ³ . Initial pressure of gas is 0.1 MPa. Find the work done during isothermal process and also find work done during			ork done	2	т 2	CO1	DOJ
				e during	3	L3	CO1	PO2
	constant volume process.							
	UN	IT - II			18			
2 a.	A piston cylinder machine contain a fluid system which passes			h passes				
	through a complete cycle, the sum of all heat transfer is -284 kW.			284 kW.				
	The system complete 100 cycles per minutes. Complete the			olete the				
	following table showing the method of each items and compute the			pute the				
	rate of work output in kW.				9	L3	CO2	PO2
	Process Q(kJ/min)	W(kJ/min)	$\Delta E(kJ/min)$]	2	20	002	101
	a - b 0	2170	-	•				
	b - c 21000	0	-					
	c - d —2100	-	-36600					
	d - a -	-	-					
b.	Apply the steady flow energy equation with neat sketch for			etch for				
	change in enthalpy.				9	L3	CO2	PO1
	i) Boiler ii) Air compresso	r iii) Stea	am Nozzle					
c.	A centrifugal air compressor c	ompresses 5.7	7 m ³ /min of	air from				
	85 kPa to 650 kPa. The initial specific volume is $0.3 \text{ m}^3/\text{kg}$ the final			the final				
	specific volume is $0.1 \text{ m}^3/\text{kg}$. The suction inlet diameter is 0.1 m and			.1 m and	9	L3	CO2	PO2,3
	that of discharge line is 0.625 m. Determine;							
	i) Change in flow work ii) Mass flow rate iii) Velocity change			y change				
	UNIT - III				18			
3 a.	With a neat sketch, explain the b				9	L3	CO3	PO1
b.	Steam initially at 1.5 MPa and 3	-		-				
	0.08 bar. The expansion in a t			•	9	L3	CO3	PO1,3
	Find the dryness fraction at exit	of the turbine	by analytica	l method				
	using steam table.							
с.	The following observations we	ere taken witl	h a separatin	g and a				
	throttling calorimeter:							
	Water separated = 2 kg , steam discharged from the throttling			-	9	L3	CO3	PO1,3
	calorimeter = 20.5 kg, temperature of steam after throttling = 110° C,							
	initial pressure = 12 bar absolute, barometer reading = 760 mm of Hg, final pressure = 5 mm of Hg. Find the quality of steam supplied.							
	Hg, final pressure = 5 mm of Hg	. Find the qua	iity of steam s	supplied.				

Contd... 3

P18ME35			Page No 3		
	UNIT - IV	18			
4 a.	i) Explain Carnot cycle with PV and TS diagram.	6	L2	CO4	PO1
	ii) Define Perpetual Motion Machine Kind-II (PMMK-2) and explain	3	L2	CO4	PO1
1	the same.				
b.	Prove that Kelvin-plank and Clausius statements of second law of	9	L2	CO4	PO1
	thermodynamics are equivalent.				
c.	A reversible heat engine operates between two reservoirs				
	maintaining at temperature of 700°C and 50°C. The engine drives a				
	reversible refrigerator which operates between reservoir maintaining				
	at temperature of 50°C and -25 °C. The heat transfer to the engine	9	L3	CO4	PO2,3
	is 2500 kJ and network output of combined engine refrigerator is				
	400 kJ. Determine the heat transfer to refrigerant and net heat				
	transfer to the reservoir at 50°C.				
	UNIT - V	18			
5 a.	i) State and prove Clausius inequality.	6	L2	CO5	
	ii) Define Dalton Law, Gibbs law and Amagots law for ideal gas and	3	L1	CO5	
	gas mixtures.	5	D 1	005	
b.	Prove that change in entropy for polytropic process with usual				
	notations $S_2 - S_1 = C_V \left(\frac{\eta - \gamma}{\eta - 1}\right) ln \frac{T_2}{T_1}.$	9	L2	CO5	
c.	An insulated cylinder of capacity 6 m ³ contains 30 kg of nitrogen.				
	Paddle work is done on the gas by stirring it till the pressure in the				
	vessel gets increased from 3 bar to 7.5 bar. Determine;				
	i) Change in internal energy	0	L3	CO5	
	ii) Work done	9			
	iii) Heat transferred				
	iv) Change in entropy				
	Take for Nitrogen $C_P = 1.04 \text{ kJ/kg-K}$ and $C_V = 0.7432 \text{ kJ/kg-K}$				

* * *