U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fifth Semester, B.E. - Mechanical Engineering Semester End Examination; February / March - 2022 Turbo Machines
Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Understand the principles and operations of Turbo-machines and the use of velocity triangles.
CO2: Apply basics of fluid machines for axial flow hydraulic turbines.
CO3: Apply basics of fluid machines for radial flow hydraulic turbines.
CO4: Apply basics of fluid machines on steam turbines.
CO5: Evaluate the performance parameters of pumps with the use of velocity triangles.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No.

Questions
I : PART - A
10
1 a. Define Degree of reaction.
2
L1 CO1 PO1
b. Define the hydraulic efficiency of hydraulic turbine.

2
L1 CO2 PO1
c. List out the different types of draft tubes used in hydraulic reaction turbine.
d. What is an extraction turbine?

2
e. Define static head and write its expression.

2
II : PART - B 90

UNIT - I 18

1 a. Derive an expression for Euler's energy for a turbo machine.
9
b. An inward flow radial turbine has nozzle angle α_{1} and rotor blades are radial at entry. The radial velocity is constant and there is no whirl velocity at discharge. Show that the utilization of factor is equal to
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 3 \mathrm{PO} 3$ $\varepsilon=\frac{2 \cos ^{2} \alpha_{1}}{1+\cos ^{2} \alpha_{1}}$.
c. At a 50% reaction stage axial flow turbine, the mean blade diameter is 60 cm . The maximum utilization of factor is 0.9 stream flow rate is $10 \mathrm{~kg} / \mathrm{s}$. Calculate the inlet and outlet absolute velocities and power developed, if the speed is 2000 rpm .

UNIT - II

2 a. Show that for maximum utilization, the speed of the wheel is equal to half of speed of jet.
b. What are design parameters considered for design of pelton turbine.
c. Pelton wheel produces 15456 kW under a head of 335 m running at a speed of 500 rpm . Turbine overall efficiency 0.84 , jet velocity co-efficiency 0.98 , speed ratio 0.46 . If the buckets deflect the incoming jet through an angle of 165°. Determine;
i) The number of jet as well as the dia of each jet
ii) The tangential force exerted by the jets on the buckets

UNIT - III

3 a. With a neat sketch, explain the working of Francis turbine.
b. An inward flow reaction turbine works under a total head of 20 m . The inner diameter is 0.6 m and outer diameter is double that of inner diameter. The water enters at an angle of 16° and the vane tip is radial at entry. The water leaves the draft tube has a velocity of $3.65 \mathrm{~m} / \mathrm{s}$. Calculate the speed of the wheel and the vane exit angle. Assume water leaves radially, what will be the power developed, if the width at inlet is 7.5 cm ?
c. A Kalpan turbine produces $58,800 \mathrm{~kW}$ under a head of 25 m which has an overall efficiency of 90%. Taking the value of speed ratio $\phi 1.6$, flow ratio $\psi 0.5$ and the hub diameter 0.35 times the outer diameter. Find the diameter and the speed of the turbine.

UNIT - IV

4 a . With the axial notation, prove that the maximum blade efficiency $\eta_{b(\max)}=\frac{\cos ^{2} \alpha_{1}\left(1+c_{b} k\right)}{2}$.
b. Define impulse and reaction turbine. List out the difference between impulse and reaction steam turbine.
c. Steam issuing from a nozzle to a De-Laval turbine with a velocity of $1000 \mathrm{~m} / \mathrm{s}$. The nozzle is 90°. The mean blade speed is $400 \mathrm{~m} / \mathrm{s}$. The blades are symmetrical. The mass flow rate is $1000 \mathrm{~kg} / \mathrm{hr}$, friction factor 0.8 , nozzle efficiency 0.95 . Calculate;
i) The blade angles
ii) Axial thrust
iii) Work done per kg of steam
iv) Power developed
v) Blade efficiency
vi) Stage efficiency
$9 \quad \mathrm{~L} 2 \mathrm{CO} 2 \mathrm{PO} 3$

18
9
L3 $\begin{array}{lll}\mathrm{CO} 3 & \mathrm{PO} 2\end{array}$
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 3 \mathrm{PO} 3$
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 3 \quad \mathrm{PO} 3$

18
$9 \quad \mathrm{~L} 2 \quad \mathrm{CO} 4 \quad \mathrm{PO} 1$
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 4 \quad \mathrm{PO} 3$
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 4 \quad \mathrm{PO} 3$

UNIT - V

5 a. List out pump losses and also define the following:
i) Manometric efficiency
ii) Mechanical efficiency
iii) Volumetric efficiency
iv) Overall efficiency
b. The outer diameter of the impeller of a centrifugal pump is 40 cm and the width of the impeller at outlet is 5 cm . The pump is running at 800 rpm and is working against a total head of 15 cm . The vane angle at outlet is 40° and manometric efficiency is 75%. Determine;
i) Velocity of flow at outlet
ii) Velocity of water leaving the vane
iii) Angle made by the absolute velocity at outlet with the direction of motion at outlet
iv) discharge
c. A three stage centrifugal pump has impeller of 40 cm diameter and 2.5 cm wide at the outlet. The vanes are curved back at the outlet at 30° and reduce the circumferential area by 15%. The manometric efficiency 85% and overall efficiency is 75%. Determine the head generated by the pump, when running at 12000 rpm and discharge the water at $0.06 \mathrm{~m}^{3} / \mathrm{s}$. Find the shaft power also.

$$
* * * *
$$

