P18ME54			Page No 1				
Carrows colds and	U.S.N						
	P.E.S. College of Engineering, Mandya - (An Autonomous Institution affiliated to VTU, Belagav Fifth Semester, B.E Mechanical Engineerin Somester End Examination: February / March	ri) g	L				
	Semester End Examination; February / March - Turbo Machines	2022					
Time: 3 hrs		Ma	ıx. Ma	ırks: 1	00		
The Students wi	Course Outcomes						
CO1: Understan CO2: Apply bas CO3: Apply bas CO4: Apply bas	nd the principles and operations of Turbo-machines and the use of velocities of fluid machines for axial flow hydraulic turbines. ics of fluid machines for radial flow hydraulic turbines. ics of fluid machines on steam turbines. the performance parameters of pumps with the use of velocity triangles.		25.				
	A is compulsory. Two marks for each question. B : Answer any Two sub-sub-sub-sub-for Maximum of 18 m	antes from	ach ur	.;+			
11) FART -). No.	B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 m. Questions	arks from e Marks			PO		
-	I : PART - A	10					
1 a. Define	Degree of reaction.	2	L1	CO1	РО		
b. Define	the hydraulic efficiency of hydraulic turbine.	2	L1	CO2	PO		
c. List ou turbine	t the different types of draft tubes used in hydraulic reaction	n 2	L1	CO3	PO		
d. What is	an extraction turbine?	2	L2	CO4	РО		
e. Define	static head and write its expression.	2	L1	CO5	PO		
	II : PART - B	90					
	UNIT - I	18					
1 a. Derive	an expression for Euler's energy for a turbo machine.	9	L2	CO1	PO		
b. An inw	ard flow radial turbine has nozzle angle α_1 and rotor blades ar	e					
radial a	at entry. The radial velocity is constant and there is no whit	:1					
velocity	at discharge. Show that the utilization of factor is equal to	o 9	L3	CO3	PO		
$\varepsilon = \frac{2\alpha}{1+\alpha}$	$\frac{\cos^2 \alpha_1}{\cos^2 \alpha_1}$.						
c. At a 5	0% reaction stage axial flow turbine, the mean blade diamete	r					
	m. The maximum utilization of factor is 0.9 stream flow rate is calculate the inlet and outlet absolute velocities and power	9	L3	CO2	PO		
develop	bed, if the speed is 2000 rpm.						
	UNIT - II	18					
	hat for maximum utilization, the speed of the wheel is equal to speed of jet.	o 9	L2	CO2	PO		
inuit of							
	re design parameters considered for design of pelton turbine.	9	L2	CO2	PO		

P18M	P18ME54		Page No 2		
c.	. Pelton wheel produces 15456 kW under a head of 335 m running at a				
	speed of 500 rpm. Turbine overall efficiency 0.84, jet velocity				
	co-efficiency 0.98, speed ratio 0.46. If the buckets deflect the incoming	0	1.0	000	DO2
	jet through an angle of 165°. Determine;	9	L2	CO2	PO3
	i) The number of jet as well as the dia of each jet				
	ii) The tangential force exerted by the jets on the buckets				
	UNIT - III	18			
3 a.	With a neat sketch, explain the working of Francis turbine.	9	L3	CO3	PO2
b.	An inward flow reaction turbine works under a total head of 20 m.				
	The inner diameter is 0.6 m and outer diameter is double that of inner				
	diameter. The water enters at an angle of 16° and the vane tip is radial				
	at entry. The water leaves the draft tube has a velocity of 3.65 m/s.	9	L3	CO3	PO3
	Calculate the speed of the wheel and the vane exit angle. Assume water				
	leaves radially, what will be the power developed, if the width at inlet				
	is 7.5 cm?				
c.	A Kalpan turbine produces 58,800 kW under a head of 25 m which has				
	an overall efficiency of 90%. Taking the value of speed ratio ϕ 1.6, flow	9	L3	CO3	PO3
	ratio ψ 0.5 and the hub diameter 0.35 times the outer diameter. Find the)	L3	005	105
	diameter and the speed of the turbine.				
	UNIT - IV	18			
4 a.	With the axial notation, prove that the maximum blade efficiency				
	$\eta_{b(\max)} = \frac{\cos^2 \alpha_1 \left(1 + c_b k\right)}{2}.$	9	L2	CO4	PO1
b.	Define impulse and reaction turbine. List out the difference between	9	12	CO4	
	impulse and reaction steam turbine.	9	L3	04	PO3
c.	Steam issuing from a nozzle to a De-Laval turbine with a velocity of				
	1000 m/s. The nozzle is 90°. The mean blade speed is 400 m/s. The				
	blades are symmetrical. The mass flow rate is 1000 kg/hr, friction factor				
	0.8, nozzle efficiency 0.95. Calculate;				
	i) The blade angles	9	L3	CO4	PO3
	ii) Axial thrust	,	L3	004	105
	iii) Work done per kg of steam				
	iv) Power developed				
	v) Blade efficiency				
	vi) Stage efficiency				

P18ME54			Page No 3		
	UNIT - V	18			
5 a.	List out pump losses and also define the following:				
	i) Manometric efficiency				
	ii) Mechanical efficiency	9	L3	CO5	PO2
	iii) Volumetric efficiency				
	iv) Overall efficiency				
b.	The outer diameter of the impeller of a centrifugal pump is 40 cm and the				
	width of the impeller at outlet is 5 cm. The pump is running at 800 rpm				
	and is working against a total head of 15 cm. The vane angle at outlet is				
	40° and manometric efficiency is 75%. Determine;				
	i) Velocity of flow at outlet	9	L3	CO5	PO3
	ii) Velocity of water leaving the vane				
	iii) Angle made by the absolute velocity at outlet with the direction of				
	motion at outlet				
	iv) discharge				
c.	A three stage centrifugal pump has impeller of 40 cm diameter and				
	2.5 cm wide at the outlet. The vanes are curved back at the outlet at 30°				
	and reduce the circumferential area by 15%. The manometric efficiency	0	1.2	CO5	
	85% and overall efficiency is 75%. Determine the head generated by the	9	L3	CO5	PO3
	pump, when running at 12000 rpm and discharge the water at $0.06 \text{ m}^3/\text{s}$.				
	Find the shaft power also.				

* * * *