U.S.N					

P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi)

Fifth Semester, B.E. - Mechanical Engineering
Semester End Examination; February / March - 2022
CAD/CAM

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

CO1: Describe latest in-put and out-put devices used in CAD.

CO2: Explain modeling techniques and Solve problems on transformations.

CO3: Explain the basic components of NC system and Compare CNC machines.

CO4: Identify CNC machine components and cutting tool system used in CNC.

CO5: Develop CNC part program for different operations.

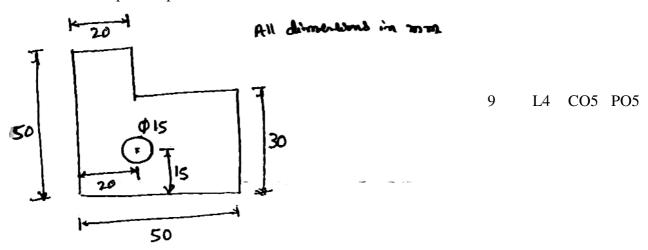
Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	PART - A	10			
1 a.	List any four advantages of CAD.	2	L1	CO1	PO2
b.	Name the two techniques used to generate the solid modeling.	2	L1	CO2	PO1
c.	Differentiate between absolute and incremental coordinate system.	2	L2	CO3	PO3
d.	What is the cutting tool materials used in the industry for different	2	L1	CO4	PO5
	applications?	2	Lı	CO4	103
e.	Define canned cycles.	2	L1	CO5	PO2
	PART - B	90			
	UNIT - I	18			
1. a	Describe the application of computer in design process.	9	L2	CO1	PO3
b.	With the help of a block diagram, discuss product cycle in	9	L2	CO1	DO2
	computerized manufacturing environment.	9	L2	CO1	PO2
c.	Differentiate between LED and LCD and state the applications.	9	L3	CO1	PO3
	UNIT - II	18			
2 a.	Explain the functions and graphic software.	9	L2	CO2	PO2
b.	Give a brief description about Bezier curves B-spines and NURBS.	9	L3	CO2	PO3
c.	A triangle is defined in a two dimensional LCG system by its vertices				
	$(1, 3)$ $(5, 7)$ and $(4, 0)$. Rotate the triangle by 60° about a point $(7, 9)$ in	9	L2	CO2	PO3
	a counter clock wise direction.				
	UNIT - III	18			
3 a.	Describe the steps involved in NC procedure.	9	L2	CO3	PO2
b.	Discuss three types of NC motion control system with sketches.	9	L2	CO3	PO2
c.	Explain the machine tool control in CNC.	9	L2	CO3	PO2

	ONII - IV	10		
4 a.	Discuss the tool presetting in CNC machines.	9	L2	CO ₄ PO ₁
b.	Explain tool change procedure using double gripper with sketches.	9	L3	CO4 PO3
c.	Write ISO coding system for tungsten carbide inserts used in turning.	9	L3	CO4 PO3

UNIT - V 18


9

L2

CO₅ PO₃

- 5 a. Discuss the various codes used in manual part programming considering, preparatory functions miscellaneous functions, Tool functions, Feed functions, spindle speed function, x, y, z motion and sequence numbers.
 - b. Write a manual part programme to drill two rows of 10 mm dia holes (03 holes in each row) on a rectangular block of 12 mm thickness.
 Assume suitable location of holes and dimensions of blank.
 9 L4 CO5 PO5 Use canned cycle for program. Assume value of spindle speed
 - c. Write the manual NC part program for the given profile. Assume suitable feed and spindle speed.

and feed rate.

* * * *