U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fifth Semester, B.E. - Mechanical Engineering

Semester End Examination; February / March - 2022

Problem solving Skill for Competitive Examinations (Technical Skills - I)

Max. Marks: 50 Time: 2 hrs

Course Outcomes

The Students will be able to:

A) σ

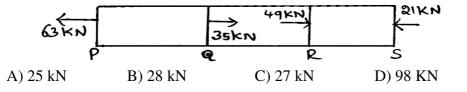
CO1: Show the performance in competitive examinations.

CO2: Apply the technical skill to attend all kind of competitive examinations.

CO3: Develop the knowledge to solve real problems.

Note.	All questions are compulsory a	nd each question carries TWO marks.				
Q. No.		Questions	Marks	BLs	COs	POs
1.	The maximum energy which	can be stored in a body upto the elastic				
	limit is called		2	т 1	CO1	DO1
	A) Proof Resilience	B) Modulus of Resilience	2	L1	CO1	POI
	C) Impact toughness	D) Endurance strength				
2.	Aluminum and mild steel having same cross section area are loaded with same force, The value of stress in Aluminum with					
	respect to mild steel		2	L2	CO1	PO2
	A) Increases	B) Decreases				
	C) Remains Same	D) May increase or decrease				
3.	The maximum principal stress f					
			2	L3	CO1	PO2

D) 1.5σ


4. Deformation formula for circular tapers cross section bar with length

C) 3σ

taper cross section bar of length 1 and diameter d₁, d₂ is

B)2σ

- A) $\frac{Pl \ln \left(\frac{d_1}{d_2}\right)}{E + \left(d_1 d_2\right)}$ B) $\left(\frac{4pl}{\pi d_1 d_{2E}}\right)$ C) $\frac{1}{2} \left(\frac{wl}{AE}\right)$ D) $\frac{pl}{d_1 d_{2E}}$
- 5. A bar having a cross-sectional area of 700mm² is subjected to axial loads at the position indicated. Determine the net tensile force on segment QR

2 CO₁ PO₂ L3

L1

CO₁ PO₁

2

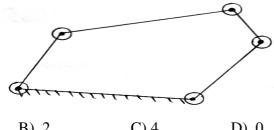
6. Match the items in columns 1 and II

Column I		Column II		
P.	Addendum	1.	Cam	
Q	I – Center	2.	Beam	
R.	Section Modulus	3.	Linkage	
S	Prime Circle	4.	Gear	

2 L1 CO₁ PO₁

L2

CO₁ PO₁


2

- A) P-4, Q-3, R-2, S-1
- B) P-4, Q-2, R-3, S-1
- C) P-3, Q-4, R-1, S-4
- D) P-3, Q-4, R-1, S-2

7. The Whitworth Quick Return mechanism is formed in a slider-crank chain when the

- A) Coupler link is fixed
 - B) Longest link is fixed link
- C) Slider is a fixed link
- D) Smallest link is a fixed link

8. A five link planar mechanism with five revolute pairs is as shown in the Figure. Determine the number of degrees of freedom of this mechanism is

2 L3 CO₁ PO₂

- A) 3
- B) 2
- C)4
- D) 0

- 9. Surface tension is due to
 - A) Viscous forces
- B) Cohesion

2 L1 CO₂ PO₁

- C) Adhesion
- D) The difference between adhesion and cohesion.
- 10. Which one of the following is the condition for stable equilibrium of a floating body?
 - A) The meta centre coincides with the centre of gravity

2 L1 CO₂ PO₁

- B) The meta centre is above the centre of gravity
- C) The meta centre is below the centre of gravity
- D) The centre of buoyancy is below the centre of gravity
- 11. A stream line is a line
 - A) which is along path of the particle
 - B) which is always parallel to the main direction of flow

L1 CO₂ PO₁

- C) along which there is no flow
- D) on which tangent drawn at any point gives the direction of velocity
- 12. Reynolds number is ______ for turbulent flow in pipe
 - A) less than 2000
- B) 2000-4000

2 L1 CO₂ PO₁

- C) less than 4000
- D) Greater than 4000

Match List – I (Dimensionless number) with List – II (Dimensionless 13. number) with List II (Nature of list forces) and select the correct answer using he codes given below the lists:

List I		Lis	st II
A.	Euler number	1.	Surface tension
B.	Weber number	2.	Gravity
C.	Mach number	3.	Pressure
D	Fraude number	4.	Elastic

2 CO₂ PO₁ L1

Codes:

	A	В	С	D
A)	3	1	4	2
B)	3	4	1	2
C)	4	1	2	3
D)	4	2	1	3

14. Number of components(c) Phases (P) and degree of freedom (F) are related by Gibbs phase rule as:

2 L1 CO₂ PO₁

A)
$$C - P - F = 2$$

B)
$$P + F - C = 2$$

C)
$$F - C - P = 2$$

D)
$$C + F - P = 2$$

15. The ratio of two extensive property is always:

A) Intensive

B) Extensive

2 CO₂ PO₁

- C) May be intensive or extensive
- D) None of the above
- 16. An ideal gas at 27°C is heated at constant pressure till its volume constant pressure till its volume becomes three times. What would be the temperature of gas?
- 2 CO₂ PO₂ L3

- A) 81°C
- B) 627°C
- C) 543°C
- D) 327°C
- 17. An engine working on Carnot cycle rejects 40% of absorbed heat from the source, while the sink temperature is maintained at 27°C then the source temperature is
- 2 L3 CO₂ PO₂

- A) 750°C
- B) 203°C
- C) 67.5°C
- D) 477°C
- 18. Three engines A, B and C operating on Carnot cycle use working substance as argon, Oxygen and air respectively. Which engines have higher efficiency?
- CO₂ PO₁ 2 L1

- A) Engine A
- B) Engine B
- C) Engine C
- D) All engines have same efficiency

19. Brinell hardness number is given by where P-load, D-dia of steel ball ddia of indent

A)
$$BHN = \frac{P}{\frac{\pi D}{2} \left[D - \sqrt{D^2 - d^2} \right]}$$
 B) $BHN = \frac{PD}{2\pi \left[D - \sqrt{D^2 - d^2} \right]}$

B)
$$BHN = \frac{PD}{2\pi \left[D - \sqrt{D^2 - d^2}\right]}$$

C)
$$BHN = 1.41 \frac{P}{D^2}$$

D)
$$BHN = \frac{2P}{\pi D \left[D^2 - \sqrt{D^2 - d^2} \right]}$$

20. Select the correct relation between E, G & K

$$B) E = \frac{3KG}{2K+G}$$

C)
$$E = \frac{9KG}{3K + G}$$

D)
$$E = 2G(1+G) =$$

21. For a ductile material toughness is the measure of

- A) Resistance to scratching
- B) Ability to absorb energy upto fracture

2 L1 CO3 PO1

- C) Ability to absorb energy till elastic limit
- D) Resistance to identation

22. To improve the ductility and machinibility which of the heat treatment is most preferred

A) Hardening

2 L1 CO3 PO1

- B) Case Hardening
- C) Annealing
- D) normalizing

23. The sudden change in shape of a structural component under load is called

A) Deformation

2 L1 CO3 PO1

- B) Impact
- C) Buckling
- D) Deflection

24. Taylor's tool life equation is given by _____ where V-cutting speed, T-Tool life, C-machining constant N-Tool life Next exponent

A) VT=C

B) $VT^{\frac{1}{n}} = C$

2 L1 CO3 PO1

- C) $VT^{-1} = C$
- D) $VT^n = C$

25. Which of the cutting tool material is used for very high speed machining operation?

A) Cubic Boron Nitride

2 L1 CO3 PO1

- B) Diamond
- C) High speed steel
- D) Stellite