

II) PARI - B : Answer any <u>Iwo</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.										
Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs					
I a.	Write2D compatibility equation for strain.	2	L1	CO1	PO1					
b.	Define plastic deformation of metals.	2	L1	CO2	PO1					
c.	Mention any four different material models.	2	L1	CO3	PO1					
d.	List any two properties of slip lines.	2	L1	CO4	PO1					
e.	List any two assumptions made in the analysis of beams.	2	L1	CO5	PO1					
	II : PART - B	90								
	UNIT - I	18								
1 a.	Derive the equation of equilibrium considering the body forces.	9	L2	CO1	PO1					
b.	For the following state of stress, find the state									
	$ \left(\boldsymbol{\sigma}_{ij}\right) = \begin{bmatrix} 100 & 80 & 0\\ 80 & -60 & 0\\ 0 & 0 & 40 \end{bmatrix} kpa \text{ of stress with respect to an axis, obtained} $	9	L3	CO1	PO1,3					
	by rotating the Z-axis, through 30° CCW.									
c.	The strain component of a point are given by, $\in_x = 0.01$,									
	$\epsilon_y = -0.02, \ \epsilon_z = 0.03, \ \gamma_{x_y} = 0.015 \ \gamma_{y_z} = 0.02, \ \gamma_{z_x} = -0.01.$	9	L3	CO1	PO1,3					
	Determine the normal and shearing strain on the octahedral plane.									
	UNIT - II	18								
2 a.	List and explain factors affecting plastic deformation.	9	L2	CO2	PO3					
b.	Briefly discuss the experimental verification of yield criteria by	9	L2	CO2	PO3					
	lode's experiment.	I	L	002	105					
c.	Explain Haigh westergaard stress space.	9	L2	CO2	PO2					

Contd....2

P18ME743			Page No 2		
	UNIT - III	18			
3 a.	Explain stress-strain diagram for different material models.	9	L2	CO3	PO1
b.	Briefly discuss the experimental verification of Saint-Venant's theory of plastic flow.	9	L2	CO3	PO3
c.	Explain the concept of plastic potential and maximum work hypothesis.	9	L3	CO3	PO3
	UNIT - IV	18			
4 a.	Define slip line and discuss the assumptions made in slip line theory.	9	L2	CO4	PO1
b.	State and prove Hencky's theory for slip line field.	9	L2	CO4	PO3
c.	Derive Geiringer equations for a slip-line field.	9	L2	CO4	PO2
	UNIT - V	18			
5 a.	Derive the relation; $\frac{M}{I_n} = \frac{\sigma}{Y_n} = \frac{H}{R_n}$ in plastic bending for a material, following the non-	9	L3	CO5	PO2
b.	 linear stream-strain law. Derive equations for theory of plastic bending for a bar of rectangular cross-section subjected to bending moment, for the following cases i) Incipient Yielding ii) Elasto plastic yielding 	9	L2	CO5	PO2
c.	iii) Fully plastic yielding A cantilever beam of 100 mm wide and 150 mm deep is 5 m long is subjected to an end load of 6000 N. If the stress strain curve for beam material is given by $\sigma = 7000 f^{0.25}$, determine the maximum stress induced in the beam.	9	L3	CO5	PO3

* * * *