

Physical constants: Electron mass, $m = 9.11 \times 10^{-31}$ kg, Electron charge, $e = 1.602 \times 10^{-19}$ C; Velocity of light, $c = 3 \times 10^{\circ}$ ms⁻¹; Planck's constant, $h = 6.626 \times 10^{-34}$ Js; Boltzmann constant, $K = 1.38 \times 10^{-23}$ JK⁻¹; Avogadro number, $N = 6.025 \times 10^{23}$ /mole; Permittivity of free space, $\varepsilon_o = 8.85 \times 10^{-12}$ Fm⁻¹.

Q. No.	Questions	Marks BLs COs POs
	I : PART - A	10
I a.	Write any two properties of wave function.	2
b.	What is Poisson's ratio? Mention its limit.	2
c.	Define Fermi factor. Write the equation for Fermi factor.	2
d.	What is Pumping? Give one example for Pumping.	2
e.	Define Quality factor. What is its significance?	2
	II : PART - B	90
	UNIT - I	18
1 a.	State de-Broglie hypothesis of matter waves. Derive an expression for the	9
	de-Broglie wavelength using the concept of matter waves.	9
b.	Find Eigen function and Eigen values for a particle in one dimensional	9
	potential well of infinite height by solving Schrödinger's wave equation.	9
c.	i) An electron has wavelength of $2\overset{\circ}{A}$. Find its kinetic energy and group	
	velocity of the de-Broglie wave associated with it.	
	ii) The position and momentum of an electron with energy 1 keV are	
	determined. If the inherent uncertainty in the measurement of its	9
	• •	
	position is 1A, what is the minimum percentage of uncertainty in its	
	momentum?	
	Contd 2	

P18PH12

UNIT - II 18 2 a. Define Young's modulus and Rigidity modulus. Obtain the relation 9 between them. b. Derive an expression for Clausius-Mosotti equation. Explain the 9 applications of dielectric in transformers. c. What is Polarization? Explain four Polarization mechanisms in detail. 9 **UNIT - III** 18 3 a. Derive an expression for density of states. 9 b. Mathematically prove that for an intrinsic semiconductor, the Fermi level lies in the middle of the band gap. Discuss the cases of Fermi level for an 9 extrinsic semiconductor with a neat diagram. c. What are the postulates of quantum free electron theory? Explain any two 9 success of quantum free electron theory. UNIT - IV 18 4 a. Explain the construction and working of semiconductor laser with a neat 9 energy level diagram. b. Discuss the principle of light propagation in optical fiber. Derive an 9 expression for the numerical aperture of an optical fiber. c. What is Attenuation? Explain the application of optical fibers in 9 communication system with a neat block diagram. UNIT - V 18 5 a. What are force oscillatrons? Arrive at the expression for amplitude in case 9 of forced oscillatrons. b. What is Meissner's effect? Explain BCS theory of super conductivity. 9 c. What are ultrasonic waves? Explain the non-destructive method of testing 9 the materials.

* * *