P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)
 First Semester, B.E. - Semester End Examination; May - 2022
 Engineering Physics
 (Common to All Branches)

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Understand the basic concepts and principles of Physics describing the phenomena associated with Engineering field.
CO2: Explain/Describe the properties of various materials, light and sound related to Engineering applications.
CO3: Formulate/Derive the Expressions for the concepts of Physics pertaining to Engineering field.
CO4: Apply the knowledge of Physics to analyze/solve the numerical problems allied to Engineering field.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for a Maximum of $\mathbf{1 8}$ marks from each unit.

Physical constants: Electron mass, $m=9.11 \times 10^{-31} \mathrm{~kg}$, Electron charge, $e=1.602 \times 10^{-19} \mathrm{C}$; Velocity of light, $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$; Planck's constant, $h=6.626 \times 10^{-34} \mathrm{Js}$; Boltzmann constant, $K=1.38 \times 10^{-23} \mathrm{JK}^{-1}$; Avogadro number, $N=6.025 \times 10^{23} / \mathrm{mole}$; Permittivity of free space, $\varepsilon_{o}=8.85 \times 10^{-12} \mathrm{Fm}^{-1}$.

Q. No.	$\begin{gathered} \text { Questions } \\ \text { I : PART - A } \end{gathered}$	$\begin{aligned} & \text { Marks BLs COs POs } \\ & 10 \end{aligned}$
I a.	Write any two properties of wave function.	2
b.	What is Poisson's ratio? Mention its limit.	2
c.	Define Fermi factor. Write the equation for Fermi factor.	2
d.	What is Pumping? Give one example for Pumping.	2
e.	Define Quality factor. What is its significance?	2
	II : PART - B	90
	UNIT - I	18
1 a.	State de-Broglie hypothesis of matter waves. Derive an expression for the de-Broglie wavelength using the concept of matter waves.	9
	Find Eigen function and Eigen values for a particle in one dimensional potential well of infinite height by solving Schrödinger's wave equation.	9
	i) An electron has wavelength of $2 \AA$. Find its kinetic energy and group velocity of the de-Broglie wave associated with it.	
	ii) The position and momentum of an electron with energy 1 keV are determined. If the inherent uncertainty in the measurement of its position is $1 \AA$, what is the minimum percentage of uncertainty in its momentum?	9

UNIT - II
2 a. Define Young's modulus and Rigidity modulus. Obtain the relation between them.
b. Derive an expression for Clausius-Mosotti equation. Explain the applications of dielectric in transformers.
c. What is Polarization? Explain four Polarization mechanisms in detail.

UNIT - III
3 a. Derive an expression for density of states.
b. Mathematically prove that for an intrinsic semiconductor, the Fermi level lies in the middle of the band gap. Discuss the cases of Fermi level for an extrinsic semiconductor with a neat diagram.
c. What are the postulates of quantum free electron theory? Explain any two success of quantum free electron theory.

UNIT - IV
4 a . Explain the construction and working of semiconductor laser with a neat energy level diagram.
b. Discuss the principle of light propagation in optical fiber. Derive an expression for the numerical aperture of an optical fiber.
c. What is Attenuation? Explain the application of optical fibers in communication system with a neat block diagram.

UNIT - V

5 a. What are force oscillatrons? Arrive at the expression for amplitude in case
of forced oscillatrons.
b. What is Meissner's effect? Explain BCS theory of super conductivity.
c. What are ultrasonic waves? Explain the non-destructive method of testing the materials.

