\square
P.E.S. College of Engineering, Mandya - 571401
(An Autonomous Institution affiliated to VTU, Belagavi)
First Semester, Master of Computer Applications (MCA)
Semester End Examination; June - 2022
Mathematical Foundation for Computer Applications
Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Explain the principles of counting and set theory.
CO2: Identify the quantifiers and their uses and Make use of fundamentals of logic theory.
CO3: Apply the mathematical induction principle and different methods to solve the given problems.
CO4: Solve the problems using the concepts of relations and functions and identify the different ways of representing relations.
CO5: make use of basic concepts of graph theory and solve the given problem.
Note: I) Answer any FIVE full questions, selecting ONE full question from each unit.
II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory.
III) Each unit carries 20 marks.
Q. No.

Questions
 UNIT - I

1 a. In how many ways can six men and six women be seated in a row?
i) If any person may sit next to any other?
ii) If men and women must occupy alternate seats?
b. A certain question paper contains three parts A, B, C with four questions in part A, five questions in part B and six questions in part C. It is required to answer seven questions selecting atleast two questions from each part. In how many different ways can a student select his seven questions for answering?
c. A total amount of Rs. 1500 is to be distributed to 3 poor students A, B, C of a class. In how many ways the distribution can be made in multiples of Rs. 100 ?
i) If everyone on these must get atleast Rs. 300 ?
ii) If A must get atleast Rs. 500 and B and C must get atleast Rs. 400 each?

OR
1 d. If $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,5,7\} B=\{2,5\} C=\{2,3,7\}$.
Evaluate the following:
i) $A \cap(B-C)=(A \cap B)-C$
ii) $(A-B) \cap(A-C)=A-(B \cup C)$
e. A professor has two dozen text books on computer science and is concerned about their coverage of topics; \boldsymbol{A}-Compilers, \boldsymbol{B}-Data structures and \boldsymbol{C}-operating systems. The following are the numbers of books that
$6 \quad$ L5 CO1 PO2

7 L1 CO1 PO1 contain material on these topics:
$|A|=8,|B|=13,|C|=13,|A \cap B|=5,|A \cap C|=3,|B \cap C|=6,|A \cap B \cap C|=2$
i) How many of the textbooks include material on exactly one of these topics?
ii) How many do not deal with any of the topics?
f. Prove that $|\overline{A \Delta B}|=A \Delta \bar{B}=\bar{A} \Delta B$, by membership table method.

7 L5 CO1 PO1

7 L2 CO2 PO1
$6 \quad$ L3 CO2 PO1

7 L2 CO2 PO1

7 L2 CO3 PO1

6 L2 CO3 PO1

L2 CO3 PO2
i) $A X B$
ii) $|A X B|$
iii) Number of relations from A to B also writes R as a set of ordered pairs

OR

3 d. Let $A=\{1,2,3,4\}$ and $B=\{1,2,3,4,5,6\}$
i) How many functions are there from A to B which is one-one?
ii) How many onto functions are there from B to A ?
iii) Can we have any onto functions from A to B ?
e. State pigeon hole principle. Prove that, if 30 dictionaries in a library contain a total of 61,327 pages, then atleast one of dictionaries must have at least 2045 pages.
f. If f and g are any two functions from R-to- R defined by,
$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ and $g(x)=x+5$. Compute $f o g, g \circ f, f o f, g o g$.

UNIT - IV

4 a. The digraphs of two relations R and S on $A=\{a, b, c\}$ are given below. Find $\bar{R}, R \cup S, R \cap S$ and their matrices.

7

7 L2 CO3 PO2

L2 CO4 PO1

7 L2 CO4 PO1

7 L2 CO4 PO2

If $B=\{c, d, e\}$ find
i) All upper bounds of B
ii) All lower bounds of B
iii) The LUB of B
iv) The GLB of B

P20MCA13

Page No... 4
e. Define least element, greatest element, minimal element maximal element of a relation R on A .
f. Define partially ordered set and draw the Hasse diagram of all positive divisors of 36.

UNIT - V

5 a. Define the following with an example for each:
i) Complete graph
ii) Bipartite graph
iii) Regular graph
b. Give examples of graphs which are;
i) Eulerian and Hamiltonian
ii) Eulerian but not Hamiltonian
7 L2 CO5 PO2
iii) Hamiltonian but not Eulerian
iv) Neither Eulerian nor Hamiltonian
c. Discuss Konigsberg Bridge problem.
$7 \quad$ L1 CO4 PO1

L1 CO4 PO1

6 L1,2 CO5 PO2

7 L6 CO5 PO2

