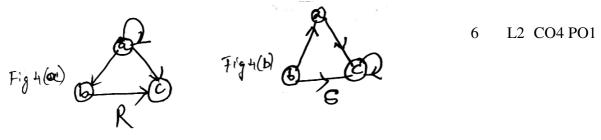
	<i>U.S.N</i>					
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) First Semester, Master of Computer Applications (MCA) Semester End Examination; June - 2022 Mathematical Foundation for Computer Applications						
Time:			:. Marks: 100			
CO1: E CO2: Id CO3: A CO4: S r CO5: m <u>Note</u> : I II	Course Outcomes dents will be able to: Explain the principles of counting and set theory. dentify the quantifiers and their uses and Make use of fundamentals of logic theory. pply the mathematical induction principle and different methods to solve the given pro- Solve the problems using the concepts of relations and functions and identify the epresenting relations. make use of basic concepts of graph theory and solve the given problem. Answer any FIVE full questions, selecting ONE full question from each unit. Any THREE units will have internal choice and remaining TWO unit questions are been been been been been been been been	the diffe	erent ways of			
Q. No.	Questions	Marks	s BLs COs PO			
-	UNIT - I					
1 a. b.	In how many ways can six men and six women be seated in a row?i) If any person may sit next to any other?ii) If men and women must occupy alternate seats?A certain question paper contains three parts <i>A</i>, <i>B</i>, <i>C</i> with four questions in	6	L3 CO1 PO2			
	part A, five questions in $part B$ and six questions in $part C$. It is required to answer seven questions selecting atleast two questions from each part. In how many different ways can a student select his seven questions for answering?	7	L3 CO1 PO			
c.	A total amount of Rs.1500 is to be distributed to 3 poor students <i>A</i> , <i>B</i> , <i>C</i> of a class. In how many ways the distribution can be made in multiples of Rs. 100? i) If everyone on these must get atleast Rs.300? ii) If <i>A</i> must get atleast Rs.500 and <i>B</i> and <i>C</i> must get atleast Rs.400 each? OR	7	L3 CO1 PO			
1 d.						
1 U.	If $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A = \{1, 2, 3, 5, 7\}$ $B = \{2, 5\}$ $C = \{2, 3, 7\}$. Evaluate the following: $i) A \cap (B - C) = (A \cap B) - C$ $ii) (A - B) \cap (A - C) = A - (B \cup C)$	6	L5 CO1 PO2			
e.	A professor has two dozen text books on computer science and is concerned about their coverage of topics; A -Compilers, B -Data structures and C -operating systems. The following are the numbers of books that contain material on these topics:	7	L1 CO1 PO			

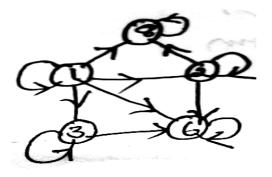
P20MCA13

Page No... 2


			5
	$ A = 8$, $ B = 13$, $ C = 13$, $ A \cap B = 5$, $ A \cap C = 3$, $ B \cap C = 6$, $ A \cap B \cap C = 2$		
	i) How many of the textbooks include material on exactly one of these topics?		
	ii) How many do not deal with any of the topics?		
f.	Prove that $ \overline{A \Delta B} = A \Delta \overline{B} = \overline{A} \Delta B$, by membership table method.	7	L5 CO1 PO1
	UNIT - II		
2 a.	Check whether $[(p \rightarrow q) \land (p \rightarrow \neg q)] \leftrightarrow \neg p$ is a tautology using truth	-	
	table.	7	L2 CO2 PO1
b.	i) State the rule of syllogism		
	ii) Test whether the following is a valid argument		
	If <i>I</i> study, then if do not fail in the examination	6	L3 CO2 PO1
	If I do not fail in the examination my father gifts a two wheeler to me.		
	Therefore, if I study then my father gifts a two wheeler to me.		
c.	For the universe of all integers let, $P(x)$: $x > 0$, $Q(x)$: x is even $R(x)$: x is a		
	perfect square and $S(x)$: x is divisible by 3.		
	Write down the following statement in symbolic form and also write their		
	negations:	7	L2 CO2 PO1
	i) Atleast one integer is even		
	ii) If x is even and a perfect square, then x is not divisible by 3		
	iii) There exists a positive integer which is even		
	UNIT - III		
3 a.	Prove that $4n < (n^2 - 7)$ for all positive integers $n \ge 6$.	7	L2 CO3 PO1
b.	For any non empty sets A,B,C prove that;		
	$i) AX(B \cup C) = (AXB) \cup (AXC)$	6	L2 CO3 PO1
	ii) AX(B-C) = (AXB) - (AXC)		
c.	If $A = \{1, 2, 3\}$ $B = \{2, 4, 5\}$ and R is a relation from A to B defined by,		
	$(a,b) \in R$. Iff <i>b</i> is a multiple of <i>a</i> . Compute;	7	L2 CO3 PO2
	i) AXB ii) AXB	/	L2 C03 F02
	iii) Number of relations from A to B also writes R as a set of ordered pairs		
	OR		
3 d.	Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 4, 5, 6\}$		
	i) How many functions are there from A to B which is one-one?	6	L1,2 CO3 PO1
	ii) How many onto functions are there from <i>B</i> to <i>A</i> ?	U	21,2003101
	iii) Can we have any onto functions from A to B?		

P20MCA13		Page No 3	
e. State pigeon hole principle. Prove that, if 30 dictionaries in a library contain			
a total of 61,327 pages, then atleast one of dictionaries must have at least	7	L3 CO3 PO2	
2045 pages.			
f. If f and g are any two functions from R -to- R defined by,	7	L2 CO3 PO2	
$f(x) = x^2$ and $g(x) = x + 5$. Compute fog, gof, fof, gog.			

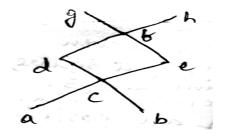
UNIT - IV


4 a. The digraphs of two relations R and S on $A = \{a, b, c\}$ are given below. Find

 \overline{R} , $R \cup S$, $R \cap S$ and their matrices.

b. On the set of all integers Z, the relation R is defined by,
(a,b)∈ R iff a² - b² is an even integer. Show that R is an equivalence 7 L2 CO4 PO1 relation

c. The digraph for a relation on the set $A = \{1, 2, 3, 6, 8\}$ is as shown below;



7 L2 CO4 PO2

Verify that (A, R) is a Poset. Also draw its Hasse diagram.

OR

4 d. Consider the Hasse diagram of a poset (A,R) given

6 L1 CO4 PO2

- If $B = \{c, d, e\}$ find
- i) All upper bounds of B

iii) The LUB of B

ii) All lower bounds of Biv) The GLB of B

P20MCA13		Page No 4			
e. Define least element, greatest element, minimal element maximal elemen of a relation R on A.	t 7	L1 CO4 PO1			
f. Define partially ordered set and draw the Hasse diagram of all positive divisors of 36.	e 7	L1 CO4 PO1			
UNIT - V					
5 a. Define the following with an example for each:					
i) Complete graphii) Bipartite graphiii) Regular graph	6	L1,2 CO5 PO2			
b. Give examples of graphs which are;					
i) Eulerian and Hamiltonian ii) Eulerian but not Hamiltonian	7	L2 CO5 PO2			
iii) Hamiltonian but not Eulerian iv) Neither Eulerian nor Hamiltonian	1				
c. Discuss Konigsberg Bridge problem.	7	L6 CO5 PO2			

* * *