

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
First Semester, Master of Computer Applications (MCA)
Semester End Examination; June - 2022
Computer Networks

Time: 3 hrs Max. Marks: 100

Course Outcomes

- CO1: Describe basic terminologies used for computer networking and data communication model with its components.
- CO2: Classify various categories of networks and types of networking devices with their functions.
- CO3: Explain the roles and functions of each layer of TCP/IP.
- CO4: Analyze the routing table for a given subnet using various routing algorithm.
- CO5: Identify how error free transmission held between two end nodes.
- *Note: I)* Answer any *FIVE* full questions, selecting *ONE* full question from each unit.
 - II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory.
 - III) Each unit carries 20 marks.

0.37	,	3.7.	D.F.	00	D.C.
Q. No.	Questions	Marks	BLs	COs	POs
1 .	UNIT - I	10	T 1 2	CO1	DO1 2 7 11
1 a.	Explain the functionalities of seven-layer OSI reference model.	10	L1,2	COI	PO1,2,7,11
b.	How long does it take a packet of length 1000 bytes to propagate				
	over a link of distance 2,500 km, propagation speed 2.5×10^8 m/s?	10	L2	CO1	PO1,2,7,11
	Does delay depends on packet length and transmission rate.				
	UNIT - II				
2 a.	Explain HTTP with non-persistent and persistent connections.	10	L1,2	CO2	PO1,2,3
b.	With an example, explain the working principle of SMTP and give	10	L1	CO2	PO1,2,3
	its high-level view of the internet email system.				
	UNIT - III				
3 a.	With a neat diagram, explain the UDP segment structure and depict	10	L2	CO3	PO2,10
	how the checksum is calculated in data transmission?				
b.	Explain the working of SR protocol with suitable scenarios.	10	L2	CO3	PO2,10
	OR				
3 c.	Explain TCP segment structure. Give its pictorial representation.	10	L1,2	CO3	PO2,10
d.	Explain the TCP connection establishment and torn-down process.	10	L1	CO3	PO2,10
	UNIT - IV				
4 a.	Explain the IPv4 datagram frame format.	10	L1	CO4	PO1,2,5,8,10
b.	Explain ICMP and its message types.	10	L1,2	CO4	PO1,2,5,8,10
	OR				
4 c.	Explain link state routing algorithm.	10	L2	CO4	PO1,2,5,8,10
d.	Explain the controlled flooding technique for broadcasting.	10	L2	CO4	PO1,2,5,8,10

P20MCA14				Page	e No 2
	UNIT - V				
5 a.	Explain the different services provided at link layer.	10	L1	CO5	PO2,3,4,12
b.	What is parity check? Give example for odd and even parity check.	5	L2	CO5	PO2,3,4,12
c.	Suppose the information content of a packet is the bit pattern				
	1 1 1 0				
	0 1 1 0				
	1 0 0 1	5	1.2	CO5	DO2 2 4 12
	1 1 0 1	3	L2	COS	PO2,3,4,12
	and an even parity scheme is being used. What would the value of				
	the field containing the parity bit for the case of a 2-D parity check				
	[used minimum length checksum field].				
	OR				
5 d.	Explain the key elements of a wireless network and obtain the	10 L1	Т 1	CO5	PO2,3,4,12
	difference between wired link and wireless link.		LI	COS	
e.	A bit stream 11011011111 is transmitted using standard CRC				
	method. The generator polynomial is 10011. Show the actual bit				
	string transmitted. Due to noise the least significant bit is inverted,	10	L1,2	CO5	PO2,3,4,12

the inverted bit string is received at the receiver. Show how this

error is detected at the receiver end?