P20MCAD11		Page No	o 1				
U.S.N							
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) First Semester, M. Tech - Civil Engineering (MCAD) Supplementary Semester End Examination; September - 2021 Continuum Mechanics - Classical and FE Approach Computational Structural Mechanics and FEM Time: 3 hrs							
Course Outcome							
 The Students will be able to: CO1: Comprehend the matrix methods and method of direct stiffness method of analysis oftrusses with different support and loading conditions. CO2: Apply the direct stiffness method to analyze the continuous beams and 2D frames withdifferent support and loading conditions. CO3: Understanding the concept of fem, formulate the displacement models for bar and beamelements and different weighted residual methods. CO4: Learn the concept of shape functions/ interpolation functions for bar element and beam element and apply the FEM to analyze cantilever and simply supported beams. Note: I) Answer any FIVE full questions, selecting ONE full question from each unit. II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory. III) Missing data, if any, may suitably be assumed. 							
Q. No. Questions	Marks	BLs COs	POs				
UNIT - I	20						
1 a. Explain the properties of flexibility matrix.	5	L2 CO1	PO1				
b. Develop the flexibility matrix for the cantilever beam shown in							
Fig. Q1.b with respect to coordinates given. Take EI = constant.							

15 L3 CO1 PO2

Take $\frac{AE}{L} = constant$ for all members.

20 L4 CO2 PO3

P20MCAD11		Page No 2			o 2	
	UNIT - II		20			
2.	Analyze the continuous beam as shown in Fig.	Q2, by using direct				
	stiffness method. Draw BMD and SFD. Take H	EI = constant.				
	K 1.0m × 0.5m × 0.5	[™] → Fig. Q2	20	L4	CO2	PO3
	UNIT - III		20			
3 a.	Explain the following briefly:		3	12	CO3	PO1
	i) External node and Internal node with examp	ple	5	L	005	101
	ii) Half bandwidth		3	L2	CO3	PO1
	iii) Geometric invariance		4	L2	CO3	PO1
b.	With neat sketches, describe various element s various structural problems.	hapes used in FEM for	10	L2	CO3	PO2
	OR					
3 c.	Using the principle of virtual displacements	derive the equilibrium				
	equation of the form;					
	$\iiint_{v} [B]^{T}[C][B]dv \{d\}$		12	L2	CO3	PO2
	$\iiint_{v} [N]^{T} \{f\} dv + \iint_{s} [N^{S}]^{T} \{p\} ds$					
d.	Derive the relationship between nodal de	gree of freedom and	8	L2	CO3	DOJ
	generalized coordinate.		0	L2	005	102
	UNIT - IV		20			
4 a.	The one dimensional bar element is made up o	f two materials as				
	shown in Fig Q4.a. Evaluate the nodal displacements, stress in each					
	element and reaction forces. What will be the change in stress in the bar subjected to temperature variation of 20° to 50° C					
	$A_1 = 2000 \text{ mm}^2$	$A_2 = 1000 \text{ mm}^2$				
	$L_1 = 1000 \text{ mm}$	$L_2 = 500 \text{ mm}$				
	$E_1 = 70 \text{ GPa}$	$E_2 = 200 \text{ GPa}$	10		963	DO
	$\alpha_1 = 23 \times 10^{-6} / ^{\circ} C$	$\alpha_2 = 11.7 \times 10^{-6} / ^{\circ} C$	12	L5	CO3	PO2
	P = 200 kN					
	1	4				

P20MCAD11 Page No 3				
b.	Using Lagrangian polynomial, derive shape functions for one			
	dimensional three noded bar element. Using natural coordinate and	8	L2 CO4 PO2	
	plot their shapes.			
	OR			
с.	In a four noded isoparametric quadrilateral element as shown in			
	Fig. Q4.c. If node one collapse to node two. Show that the			
	quadrilateral element reduce to constant strain triangle element.			
	$2 \begin{pmatrix} (0,2) \\ 2 \end{pmatrix} + (2,2) \\ 3 \begin{pmatrix} (0,0) \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	20	L3 CO4 PO3	
	UNIT - V	20		
5 a.	Derive the shape function for two noded beam element using	12	L3 CO4 PO2	
	Hermitian interpolation function and plot their shapes.		102	
b.	Evaluate the following integral using two point Gauss quadrature			
	formula and verify the exact value.	8	L5 CO4 PO2	

$$I = \int_{-1}^{+1} (4x + 3x^2 + 2) dx$$

* * *