U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
First Semester, M. Tech - Civil Engineering (MCAD)
Supplementary Semester End Examination; September - 2021
Continuum Mechanics - Classical and FE Approach
Computational Structural Mechanics and FEM
Time: 3 hrs

Course Outcome

The Students will be able to:
CO1: Comprehend the matrix methods and method of direct stiffness method of analysis oftrusses with different support and loading conditions.
CO2: Apply the direct stiffness method to analyze the continuous beams and 2D frames withdifferent support and loading conditions.
CO3: Understanding the concept of fem, formulate the displacement models for bar and beamelements and different weighted residual methods.
CO4: Learn the concept of shape functions/ interpolation functions for bar element and beam element and apply the FEM to analyze cantilever and simply supported beams.
Note: I) Answer any FIVE full questions, selecting ONE full question from each unit.
II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory.
III) Missing data, if any, may suitably be assumed.
Q. No.

Questions

 Marks BLs COs POsUNIT - I
1 a. Explain the properties of flexibility matrix.
b. Develop the flexibility matrix for the cantilever beam shown in

Fig. Q1.b with respect to coordinates given. Take $\mathrm{EI}=$ constant .

Fig Q1.b
OR
1 c. Analyze the truss shown in Fig.Q1.c.Using direct stiffness method.
Take $\frac{A E}{L}=$ constant for all members.

$20 \quad \mathrm{~L} 4 \quad \mathrm{CO} 2$
PO3

UNIT - II
2. Analyze the continuous beam as shown in Fig. Q2, by using direct stiffness method. Draw BMD and SFD. Take EI = constant.

UNIT - III
3 a . Explain the following briefly:
i) External node and Internal node with example
ii) Half bandwidth
iii) Geometric invariance
b. With neat sketches, describe various element shapes used in FEM for various structural problems.

OR
3 c. Using the principle of virtual displacements derive the equilibrium equation of the form;
$\iiint_{v}[B]^{T}[C][B] d v\{d\}$
$\iiint_{v}[N]^{T}\{f\} d v+\iint_{s}\left[N^{S}\right]^{T}\{p\} d s$
d. Derive the relationship between nodal degree of freedom and generalized coordinate.

UNIT - IV

8 L2 CO3 PO2

4 a . The one dimensional bar element is made up of two materials as shown in Fig Q4.a. Evaluate the nodal displacements, stress in each element and reaction forces. What will be the change in stress in the bar subjected to temperature variation of 20° to $50^{\circ} \mathrm{C}$
$\mathrm{A}_{1}=2000 \mathrm{~mm}^{2}$

$$
\mathrm{A}_{2}=1000 \mathrm{~mm}^{2}
$$

$\mathrm{L}_{1}=1000 \mathrm{~mm}$
$\mathrm{L}_{2}=500 \mathrm{~mm}$
$\mathrm{E}_{1}=70 \mathrm{GPa}$
$\mathrm{E}_{2}=200 \mathrm{GPa}$
$\alpha_{1}=23 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
$\alpha_{2}=11.7 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
$\mathrm{P}=200 \mathrm{kN}$

Contd... 3

P20MCAD11

b. Using Lagrangian polynomial, derive shape functions for one
dimensional three noded bar element. Using natural coordinate and plot their shapes.

OR

c. In a four noded isoparametric quadrilateral element as shown in

Fig. Q4.c. If node one collapse to node two. Show that the quadrilateral element reduce to constant strain triangle element.

UNIT - V
20 L3 CO4 PO3

20
5 a. Derive the shape function for two noded beam element using Hermitian interpolation function and plot their shapes.
b. Evaluate the following integral using two point Gauss quadrature formula and verify the exact value.

L5 CO4 PO 2
$\mathrm{I}=\int_{-1}^{+1}\left(4 x+3 x^{2}+2\right) d x$

