P20 N	ACAD12			Page	No 1					
	U.S.N									
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) First Semester, M.Tech Civil Engineering (MCAD) Semester End Examination; June-2022 Structural Dynamics Theory and Computation										
1 1110	e: 3 hrs Course Outcome		ma.	x. mur	ks: 100					
 The Students will be able to: CO1: Understand the basic principles of dynamics. CO2: Analyze lumped mass systems for their dynamic behaviour. CO3: Evaluate the structural characteristics of continuous vibratory system. CO4: Carry out dynamic analysis of beams using FEM. Note: I) Answer any FIVE full questions, selecting ONE full question from each unit. II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory. III) Each unit carries 20 marks. IV) Missing data, if any, may suitably be assumed. 										
Q. No.	Questions	Marks	BLs	COs	POs					
	UNIT - I	20								
1 a.	Establish the equation of motion using dynamic equilibrium for a spring mass system.	10	L1	CO2	PO1,3,5					
b.	What are the characteristics of dynamic loading? Briefly discuss.									
	State;	10	L1	CO3	PO1,3,5					
	i) Dynamic Degrees of freedom ii) D'Alembert's Principle									
	OR									
1 c.	List the types of damped system and sketch the responses neatly. Also obtain the equation of motion for critically damped systems.	12	L2	CO3	PO1,3,5					
d.										
u.	Unknown mass m is attached to the one end of the spring of stiffness									

	stiffness k.				
	UNIT - II	20			
2 a.	With a neat sketch, discuss the features of frequency response curves				
	for different damping ratios of SDOF system and evaluate the	12	L2	CO3	PO1,3,5
	frequency ratio at which the response is maximum.				
b.	Derive Duhamel's integral used to evaluate the response of an	8	L2	CO3	PO1,3,5
	undamped spring-mass system.	0	LZ	COS	101,5,5
	OR				
2 c.	A vibrating system having mass 5 kg is suspended by a spring of				
	stiffness 1.2 N/mm is forced to vibrate by a harmonic force of 9 N.				

attached with the m and the natural frequency of the system is

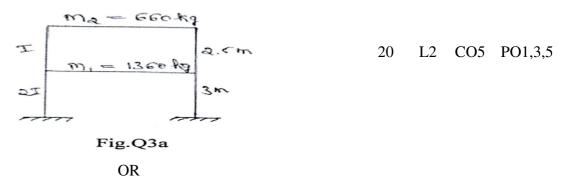
lowered by 25%, determine the value of unknown mass m and

Assuming damping ratio of 0.1 N-s/mm. Determine;

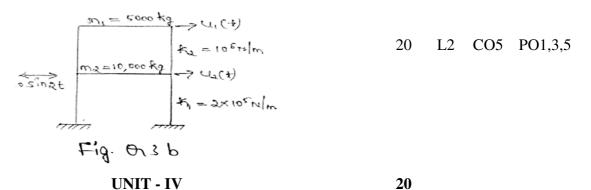
Contd... 2

L1 CO3 PO1,3,5

L2 CO3 PO1,3,5


8

12


P20MCAD12

- i) Resonant frequency
- ii) Amplitude at resonance
- iii) Phase angle at resonance
- iv) Frequency corresponding to peak amplitude
- v) Peak amplitude
- vi) Phase angle corresponding to peak amplitude
- d. Derive the expression for the steady state response of a spring mass dashpot system, with main mass *M*, an eccentric mass *m*, eccentricity 8 L2 CO3 PO1,3,5 *e* and rotation of machine is ω rad/sec.

3 a. Evaluate the natural frequency and mode shapes for the system shown in Fig. Q3a. Draw mode shape diagram.

3 b. Obtain the matrix form of differential equation of motion. Also evaluate the natural frequencies and mode shapes for the MDOF system shown in Fig. Q3b.

4.	Set up the differential equation of motion and obtain the characteristic				
	equation for a simply supported beam subjected to free transverse	20	L3	CO3	PO1,3,5
	vibration. Also obtain the expression for natural frequency.				
	UNIT - V	20			
5.	Using the cubic Hermitian polynomials, derive the shape function for				
	a two nodded Euler-Bernoulli element. Also derive mass coefficient	20	L4	CO4	PO1,3,5

 M_{ij} for i = 1, j = 1, 2 and 3.