P20M	CAD13		1	Page No	o 1					
	U.S.N									
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) First Semester, M.Tech Civil Engineering (MCAD) Semester End Examination; April / July - 2021 Continuum Mechanics - Classical and FE ApproachTime: 3 hrsMax. Marks: 100										
Course Outcome										
 The Students will be able to: CO1: Understand the concept of stresses and analyze the various mathematical operations involved I analyzing stresses in 2D and 3D problems in Cartesian and polar coordinates. CO2: Apply the concept of stain at a point and to get acquaint with the various mathematical operations involved in analysis strains in 2D and 3D problems in Cartesian and polar coordinates . CO3: Develop general stress strain relations and understand its application in various cases. CO4: Apply the basic principles of theory of plasticity to understanding the plastic behaviour of materials and theories of failure. Note: I) Answer any FIVE full questions, selecting ONE full question from each unit. II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory. III) Each unit carries 20 marks. IV) Missing data, if any, may suitably be assumed. 										
Q. No.	Questions	Marks	BLs	COs	POs					
	UNIT - I	20								
1 a.	Derive Strain-stress relations and stress-strain relations for a three dimensional state of stress. Also derive relationship between bulk modulus and young's modulus.	12	L3	CO1	PO1					
b.	For what values of <i>a</i> and <i>b</i> will be the following stress distribution represents an equilibrium state. If the body forces are constant. $\sigma_x = 20x^2y$ $\sigma_y = ay^3$ $\tau_{xy} = bxy^2$	08	L3	CO1	PO1					
1 c.	OR Derive the equation of equilibrium for two dimensional problems in polar coordinates.	10	L3	CO1	PO2					
d.	Find the magnitude and direction of principal stresses with the following data: <i>i</i>) $\sigma_x = 30 MPa$, $\tau_{xy} = 60 MPa$ <i>ii</i>) $\sigma_x = 60 MPa$, $\sigma_y = 30 MPa$ $\tau_{xy} = 50 MPa$	10	L1	CO1	PO2					
2 a.	UNIT - II Consider the displacement field, $u = 0.05 \text{ y}^2$, $v = 0.04 \text{ yz}$ and	20								
	$w = 0.04+0.06 x^2 z$. What are the rectangular strain components at the point P (2, -2, -1). Use only linear terms.	10	L2	CO2	PO2					
b.	Show that $\tau_{xy} = \tau_{yx}$, $\tau_{yz} = \tau_{zy}$ and $\tau_{xz} = \tau_{zx}$ as complementary shear stresses	10	L1	CO2	PO2					

OR

P20M0	CAD13		Ì	Page N	o 2
2 c.	The strain component at a point is given by,				
	$\epsilon_x = 0.02, \epsilon_y = 0.02 \epsilon_z = 0.01$	8	L1	CO2	PO2
	$\gamma_{xy} = 0.03$ $\gamma_{yz} = 0.04$ $\gamma_{xy} = 0.04$				
	Determine the normal and shearing strains on the Octahedral plane.				
d.	Derive the expression for the normal and tangential components of				
	strain at a given point along desired directions where the strain	12	L2	CO3	PO2
	components \in_x, \in_y and γ_{xy} are known.				
2 -	UNIT - III	20			
3 a.	Derive the compatibility equation for plane strain problem in Cartesian coordinate system.	12	L2	CO2	PO1
b.	Explain plane stress and plane strain with examples.	08	L2	CO2	PO1
	OR				
c.	Using stress function in the form of a polynomial of fourth degree.	10	L3	CO3	PO2
	Plot a stress on rectangular plate of size 2C×L.				
d.	Show that $\sigma_x = -\frac{Pxy}{I}$, $\sigma_y = 0$ and $\tau_{xy} = -\frac{P}{2I}(C^2 - y^2)$ are the				
	expression for the stresses components is solving a problem for a	10	L3	CO3	PO2
	narrow cantilever of span "L" with rectangular cross section under an				
	end load P.				
Λ	UNIT - IV	20			
4.	For a plate having a small circular hole in the middle and subjected to				
	uniform tensile stress in the horizontal direction. Find the	20	L4	CO4	PO3
	corresponding stress components. Also find the stress concentration at the edge of the hole.				
	UNIT - V	20			
5.	Find the shape function at point P as shown in Fig. 5. Also find the	20			
	stiffness matrix for the triangular element. Assume plane stress				
	condition constant thickness <i>t</i> equal to 1 unit and poison ratio = 0.3 .				
	1 Y				
	3(8,12)				
	(4,8) P(6,9)	20	L4	CO4	PO3
	2(10,5)				
	××				
	Fis. 5				