P20M0	CAD151		Pe	age N	o 1					
	U.S.N									
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) First Semester, M.Tech Civil Engineering (MCAD) Semester End Examination; June - 2022 Reliability Analysis and Design of Structural Elements Time: 3 hrs										
10100.0	Course Outcome		1110.5.1	nunce	. 100					
The Students will be able to: CO1: Apply statistical principles for analyzing randomness in variables. CO2: Test goodness of fit of distribution in the data CO3: Adopt different acceptance and rejection tests for strength and other parameters of measurement. CO4: Carry out reliability analysis and compute reliability index, for the given design details. Note: I) Answer any FIVE full questions, selecting ONE full question from each unit. II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory. III) Each unit carries 20 marks.										
	Use of statistical tables allowed.									
Q. No.	Questions UNIT - I	Marks 20	BLs	COs	POs					
1 a.	The field data of soil samples collected from various depths is given	20								
	below; $\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	L4	CO1	PO1,2					
	OR									
1 b.	With relevant expression, define normal, log normal and Gama distribution. Mention their applications.	20	L1	CO1	PO1,2					
	UNIT - II	20								
2 a.	A simply supported beam is subjected loads P_1 and P_2 and P_3 as shown in Fig Q (2a).									
	$F_{1} \qquad F_{2} \qquad F_{3}$ $\downarrow \qquad \downarrow \qquad$	12	L3	CO1	PO1,2					

P20MCAD151			Р	age No 2
	Determine the expected value and standard deviation of the shear			
	force at the left end, if			
	i) Loads P ₁ , P ₂ and P ₃ are statically independent			
	ii) If loads are correlated with correlation coefficients.			
	$\rho_{12} = 0.7, \qquad \rho_{23} = 0.8, \qquad \rho_{51} = 0.6$			
b.	Discuss briefly the various sources of uncertainty during the amount			
	of performance of a structure. Also plot the various reliability	8	L2	CO1 PO1,2
	distributions. Hence define reliability and hazard function.			
	UNIT - III	20		
3 a.	It is given that the ratio of the mean value of the cube strength of			
	M20 concrete to its characteristic strength is 1.4 and the coefficient of	8	L2	CO3 PO1,2
	variation of the strength is 0.18. Determine the allowable stress for	0		05 101,2
	the probability of failure of concrete equal to 10^{-3} and $k = -3.09$.			
b.	From the statistical analysis of live load survey, it is found that live			
	load follows the log normal distribution with parameters.			
	$\tilde{L} = 1217 \ N \ / \ m^2$ $\sigma_{\ln L} = 0.368$			
	Determine the characteristic load for $P_k = 0.05$. if,	12	L2	CO3 PO1,2
	i) There is no change in tenancy			
	ii) The building is going to be occupied by 5 tenants during the life			
	time of the building			
	UNIT – IV	20		
4 a.	A steel beam, whose cross section is classified as compact section,			
	this implies that its moment carrying capacity is the plastic moment			
	computed as $M_P = f_y z$, where $Z =$ plastic section modules and f_y yield			
	strength. M, the total load effect. Which is the maximum moment			
	demand on the beam due to the applied loading? The strength limit			
	state function is $g(x) = f$, z-m. Give the following data:	20	L3	CO4 PO1,2
	$\mu_{fy} = 275.8 \text{ N/mm}^2$, $\mu_z = 819353.2 \text{ mm}^2$, $\mu_m = 1.1298 \times 10^8 \text{ N-mm}$			
	$(cov)_{fy} = 0.125, (cov)_z = 0.05 \& (cov)_m = 0.2$ respectively.			
	Solve the problem by FOSM method and compute reliability index			
	(β), the resistance factor (ϕ), the load factor (γ) and the risk or			
	probability of failure (P _f).			

Contd... 3

P20MCAD151 Page No 3				
4 b.	Determine the reliability index for a simply supported beam for the			
	the limit state of shear $g(x) = \tau_s t_w d$ -0.5P. The beam is subjected to			
	point load P at the mid-span, where " d " is depth of the beam, t_w is the	20	L3	CO4 PO1,2
	thickness of the beam τ_s is the shear strength of the material.			
	$\mu_p = 4000 \text{ N}, \ \sigma_p = 1000 \text{ N}, \ \mu_{\tau s} = 95 \text{ N/mm}^2, \ \sigma_{\tau s} = 10 \text{ N/mm}^2,$			
	$\mu_d = 50 \text{ mm}, \sigma_d = 2.5 \text{ mm} \text{ and } d/t_w = 40. \text{ Solve the problem by FOSM}$			
	method			
	UNIT - V	20		
5 a.	By quoting the uses of Monte Carlo method, explain briefly the			CO4 PO1,2
	various steps involved in this technique in estimating f_R (r). Also	20	L3	
	explain the procedure of generating a random derivative from a			
	specific distribution. Hence explain inverse transformation technique.			
	OR			
5 b.	A simply supported beam of span 'l' with UDL 'w' with a circular			
	cross section and uniform loading having a deflection of Δ .			
	$\Delta = \frac{5WL^4}{384EI}$	20	1.2	CO4 PO1,2
	Assume that l, E and W are deterministic variables. Also assume that		L3	
	the diameter is a random variable over the range $d_a \le d \le d_b$.			
	Compute standard deviation and CoV of deflection using Monte Carlo			

method.

* * *