U.S.N					
0.0.21					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, M. Tech - Computer Science and Engineering (MCSE) Semester End Examination; June -2022 Advanced Algorithms

Time: 3 hrs Max. Marks: 100

Course Outcome

The Students will be able to:

- CO1: Analyze and find the complexity of the given problem.
- CO2: Design efficient algorithm using Divide-and-Conquer Strategy.
- CO3: Design and analyze algorithms to optimization problems.
- CO4: Compute optimal solution for the problem using approximation algorithms.
- CO5: Apply randomized algorithms for the given problem.

Note: I) Answer any FIVE full questions, selecting ONE full question from each unit.

- II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory.
- III) Each unit carries 20 marks.

Q. No.	Questions	Marks	BLs	COs	POs
	UNIT - I	20			
1 a.	Determine the time complexities of the binary search for the following				
	cases:	10	L2	CO1	
	i) Best case ii) Average case iii) Worst case	10	LL	COI	
b.	Write a greedy algorithm for finding Kruskal's minimum spanning tree.	10	L1	CO1	
	UNIT - II	20			
2 a.	Apply a divide-and-conquer strategy to find the maximum of eight number				
	given below;	10	L3	CO2	
	"29, 14, 15, 1, 6, 10, 32, 12"				
b.	Write an algorithm to construct voronoi diagram using divide-and-conquer	4.0		G0.	
	technique.	10	L2	CO2	
	OR				
c.	Write the Euclidean nearest neighbor searching problem.	10	L2	CO2	
d.	Write an A* algorithm with an example.	10	L2	CO2	
	UNIT - III	20			
3 a.	Write a prune-and-search algorithm to solve 2-variable linear	10	L2	CO3	
	programming problem.	10	L2	COS	
b.	Explain the RNA maximum base pair matching problem using dynamic	10	T 1	G02	
	programming with an example.	10	L1	CO3	
	OR				
c.	Write weighted single step graph edge searching problem on trees with an	10	1.0	CO2	
	example.	10	L2	CO3	
d.	Write Prune-and-search algorithm to solve special linear programming				
	problem.	10	L3	CO3	

P20MCSE11				Page No 2	
	UNIT - IV	20			
4 a.	Write an approximation algorithm for the Euclidean travelling salesperson problem with an example.	10	L2	CO4	
b.	Write an approximation algorithm for a special bottleneck weighted K-supplier problem.	10	L2	CO4	
	OR				
c.	Write an approximation algorithm for the multiple sequence alignment problems with an example.	10	L2	CO4	
d.	Write a 2-approximation algorithm for the sorting by transportation problem.	10	L2	CO4	
	UNIT - V	20			
5 a.	Write a randomized algorithm to test whether a number is a prime with an example.	10	L2	CO5	
b.	Write the online k-server problem and a greedy algorithm to solve this problem define on planar trees.	10	L2	CO5	