Q. No.

1 a.

b.

с.

d.

the help of block diagram.

U.S.N P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) First Semester, M. Tech - VLSI Design and Embedded System (MECE) Semester End Examination; June-2022 **Embedded System Design** Time: 3 hrs Max. Marks: 100 **Course Outcome** The Students will be able to: CO1: To gain knowledge of components of Embedded systems such as system core, I/O devices, memory, communication interface, multiprocessing, and RTOS. CO2: To obtain insight to design challenges, techniques, methodology, debugging techniques, performance criteria and non-functional requirements. CO3: To be able to design simple Embedded systems for the practical problems and debug/test them. Also, able to prepare & present a report. CO4: To be able to analyze Embedded systems and related issues and come up with improvised solutions through self learning and research. **Note:** I) Answer any **FIVE** full questions, selecting **ONE** full question from each unit. II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory. III) Each unit carries 20 marks. Questions Marks BLs COs POs UNIT - I 20 Briefly explain the characteristics of embedded computing applications. 6 L2 CO1 PO5 Discuss any two advantages of microprocessor based digital system L3 PO5 4 **CO1** design. Analyze the requirements of a GPS moving map and prepare a 10 L3 CO1 PO3 requirement form. OR Explain major levels of abstraction in embedded system design process.

	Also discuss the requirements for design.				
e.	Discuss different instruction sets used in ARM processor.	10	L2	CO2	PO5
	UNIT - II	20			
2 a.	Briefly explain how cache supports reads in memory system. Also explain a level-2 cache system.	10	L2	CO2	PO3
b.	With the help of simple code, Illustrate arithmetic operation in PIC16F and ARM processors.	10	L3	CO2	PO3
	OR				
c.	Explain the hardware architecture of a typical computing platform.	10	L2	CO2	PO5
d.	Discuss bus organization and the basic building block of bus protocol with	10	L3	CO2	PO5

10

L3

CO2 PO5

P20MECE12			Page No 2		
	UNIT - III	20			
3 a.	Write a C code to implement circular buffer and illustrate how it can store	10	L3	CO3	PO3
	a subset of data stream.	10	20	000	100
b.	Discuss the different debugging techniques.	10	L2	CO2	PO5
	UNIT - IV	20			
4 a.	Briefly explain any five basic functions of real time Kernel.	10	L2	CO2	PO5
b.	Three processes with process ID's P1, P2 and P3 with estimated				
	completion time of 6, 4, 2 ms respectively enters ready queue together in				
	order P1, P2, P3. Estimate process time and Turn Around Time(TAT) for	10	L3	CO4	PO3
	each processes and average waiting time and Turn Around Time(assuming				
	no I/O waiting) for the processes in RR algorithm with time slice = 2 ms .				
	OR				
c.	Explain in brief the "Dining Philosopher problem". Describing the	10	12	CO4	PO5
	synchronization issues in resource allocation and proposed solution.	10		004	105
d.	Three processes with process ID's P1, P2 and P3 with estimated				
	completion time of 10, 5, 7 ms respectively enters ready queue together. A				
	new process P4 with estimated completion time to 2 ms enters ready queue				
	after 2 ms of execution of P2. Assume no I/O operations are involved and				
	estimate;	10	L3	CO4	PO3
	i) Waiting time for each process				
	ii) Turn Around time for each process				
	iii) Average waiting time				
	iv) Average turn Around time				
	UNIT - V	20			
5 a.	Briefly discuss the waterfall and spiral development models.	10	L2	CO5	PO5
b.	Briefly explain the concept of concurrent engineering applied to telephone system.	10	L2	CO5	PO5

* * *