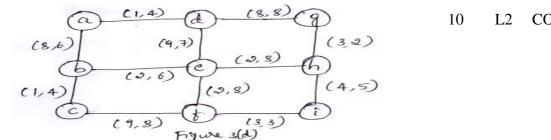

Page No... 1 U.S.N P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) First Semester, M. Tech - VLSI Design and Embedded System (MECE) Semester End Examination; June - 2022 **Physical Design** Time: 3 hrs Max. Marks: 100 **Course Outcome** The Students will be able to: CO1: To apply the knowledge of graph theory in VLSI Physical Design. CO2: To be able to analyze the VLSI Physical Design algorithms. CO3: To be able to apply the VLSI Physical Design algorithms. CO4: To be able to analyze the Physical Design for specific constraints. Note: I) Answer any FIVE full questions, selecting ONE full question from each unit. II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory. III) Each unit carries 20 marks. IV) Missing data, if any, may suitably be assumed. Questions Q. No. Marks BLs COs POs UNIT - I 20 1 a. Discuss Graph Theory terminology. 10 L2 CO1 PO3 Given the initial partition of nodes (a-h) as shown in Fig. 1(b) can be b. optimally partitioned using KL algorithm, perform the first pass of the algorithm. 10 CO3 PO1

I.4



UNIT - II 20 2 a. Illustrate the pin assignment along with example in chip planning. 10 L2 CO2 **PO2** b. Given the floor plan with blocks *a-e* as shown in Fig. 2(b). Generate the corresponding horizontal and vertical constraint graph. Also generate the corresponding sequence pair. 10 CO2 PO5 L4 b а e d с Fig. 2(b)

	UNIT - III	20			
3 a.	Discuss the optimization objectives in global and detailed placement.	10	L4	CO2	PO5
b.	Perform min-cut placement to place gates a - g on a 2×4 grid as shown				
	in Fig. 3(b), use Kernighan-Lin algorithm for partitioning. Use				
	alternating cutline's. The cutline cut represent the initial vertical cut.	10	L2	CO3	PO1
	Each edge on grid as capacity $\sigma_p(e) = 2$. Estimate whether the				
	placement is routable. Contd 2				

- 3 c. Along with algorithm, explain the routing by integer linear 10 L2 programming.
 - d. For the graph with mine nodes (a-i) and add weights (W1, W2) as shown in Fig. 3(d). Use Dijkstra's algorithm to find the shortest path from the source S (node a) to target T (node h). Generate tables from group 2 and 3.

L2 CO3 **PO1**

CO3

PO1

	UNIT - IV	20			
4 a.	Explain clocking scheme in clock routing.	08	L2	CO3	PO1
b.	Illustrate geometric matching based algorithm.	06	L4	CO2	PO5
c.	Illustrate MMM algorithm.	06	L4	CO2	PO5
	OR				
d.	Illustrate DME algorithm in clock routing.	10	L4	CO2	PO5
e.	Illustrate H- tree based algorithm.	10	L4	CO2	PO5
	UNIT - V	20			
5 a.	Illustrate static timing analysis with example.	10	L2	CO5	PO1
b.	Illustrate delay budgeting with zero slack algorithms.	10	L4	CO4	PO5
	OR				
c.	Briefly explain netlist restructuring in physical synthesis.	10	L2	CO4	PO5
d.	Illustrate performance-driven design flow in timing closure.	10	L4	CO5	PO3