P21PH102		Page No 1					
	U.S.N						
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) First Semester, B.E Semester End Examination; May - 2022 Engineering Physics (Common to All Branches) Time: 3 hrs							
Course Outcomes							
The Students will be able to:							
 CO1: Recall the fundamental Definitions or Laws of physics relevant to Engineering field. CO2: Mention the various Properties and Applications by understanding the course topics pertaining to Engineering field. CO3: Explain various Concepts and Principles used in the topics to understand the theory related to Engineering field. CO4: Derive the expressions for the Physical Quantities on the topics of the course by applying the theory relevant to Engineering field. CO5: Solve the numerical problems by applying proper solutions to verify the theoretical concepts related to Engineering field. 							
<u>Note</u> : I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.							
Physical constants: Electron mass, $m = 9.11 \times 10^{-31}$ kg, Electron charge, $e = 1.602 \times 10^{-19}$ C; Velocity of light, $c = 3 \times 10^8$ ms ⁻¹ ; Planck's constant, $h = 6.626 \times 10^{-34}$ Js; Boltzmann constant, $K = 1.38 \times 10^{-23}$ JK ⁻¹ ; Avogadro number, $N = 6.025 \times 10^{23}$ /mole; Permittivity of free space, $\varepsilon_o = 8.85 \times 10^{-12}$ Fm ⁻¹ .							
Q. No.	Questions	Marks BLs COs POs					
	I : PART - A	10					
I a. State Heisenberg's unc	ertainty principle with expression.	2 L1 CO1 PO1					

Q. No.	Questions	Marks	BLs (COs	POs
	I : PART - A	10			
I a.	State Heisenberg's uncertainty principle with expression.	2	L1 (CO1	PO1
b.	Mention four types of Polarization.	2	L1 (CO2	PO1
c.	Write an expression for electron concentration in conduction band.	2	L1 (CO1	PO1
d.	What is laser cavity?	2	L1 (201	PO1
e.	Define Mach number and Mach angle.	2	L1 (CO1	PO1
	II : PART - B	90			
	UNIT - I	18			
1 a.	What are matter waves? Derive the expression for de-Broglie wavelength using group velocity.	9	L1 C	CO1	PO1
b.	Derive the expression for Eigen function and Eigen energy for a particle in a potential well of infinite height.	9	L3 (CO4	PO1
c.	 i) While measuring velocity 0.8 km/s of an electron, the experiment involves an error of 0.003%. What could be the corresponding uncertainty in the measurement of position? 	4	L3 C	CO5	PO2
	ii) An electron is trapped in a 1-D potential well of infinite height and of width of 0.1 nm. Calculate the energy required to excite it from its ground state to fifth excited state.	5	L3 (CO5	PO2
	UNIT - II	18			
2 a.	Derive the relation between Young's modulus, Bulk modulus, Rigidity	9	L3 (CO4	PO1
	modulus and Poisson's ratio. Contd 2	,	(

P21PH	P21PH102		Page No 2
b.	i) Define dielectric constant and dielectric polarization. Explain the applications of dielectrics in transformers.		L1 CO1 PO1
	ii) Find the polarization produced in a dielectric medium of relative permittivity 15 in presence of an electric field of 500 <i>V/m</i> .	3	L1 CO1 PO1
c.	Write a note BCS theory of super conductivity and Maglev vehicles.	9	L2 CO3 PO1
	UNIT - III	18	
3 a.	Define the terms Fermi velocity and Fermi temperature. Discuss the variation of Fermi factor with energy and temperature.	9	L1 CO1 PO1
b.	Derive the expression for conductivity and resistivity of an intrinsic semiconductor in terms of mobility of charge carriers.	9	L3 CO4 PO1
с.	i) Explain the merits of quantum free electron theory.	5	L3 CO5 PO2
	ii) For intrinsic gallium arsenide, at room temperature electrical		
	conductivity is $10^{-6} \Omega^{-1} m^{-1}$, the electron and hole mobilities are		
	$0.85 m^2 v^{-1} s^{-1}$ and $0.04 m^2 v^{-1} s^{-1}$ respectively. Compute the intrinsic	4	L3 CO5 PO2
	carrier concentration at room temperature.		
	UNIT - IV	18	
4 a.	Derive the expression for energy density in terms of Einstein's		
i u.	coefficients.	9	L3 CO5 PO2
b.	Discuss the tree types of optical fibers with neat diagram.	9	L3 CO5 PO2
c.	i) A pulsed laser emits photons of wavelength 780 nm with 20 mW		
	average powers per pulse. Calculate the number of photons contained in	4	L3 CO5 PO2
	each pulse if the pulse duration is 10 ns.		
	ii) The attenuation of light in an optical fiber is estimated to be $2.0 \ dB/km$.	5	L3 CO5 PO2
	What friction of the initial intensity remains after 1 km and after 8 km.	5	
	UNIT - V	18	
5 a.	Define reverberation time. Describe the factors affecting a good acoustical building and their remedies.	9	L2 CO3 PO1
b.	i) Explain the measurement of ultrasonic velocity in liquids.	5	L2 CO3 PO1
	ii) A cinema hall has a volume of 7500 m ³ . It is required to have		
	reverberation time of 1.5 seconds. What should be the total absorption in the hall?	4	L2 CO3 PO1
c.	i) Mention the applications of shock waves.	5	L3 CO5 PO2
	ii) The distance between the two pressure sensors in a shock tube		
	is 150 mm. The time taken by a shock wave to travel this distance is		
	0.3 ns. If the velocity of sound under the same condition is 340 ms^{-1} ,	4	L3 CO5 PO2
	find the Mach number of the shock wave.		