U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)
 First Semester, B.E. - Semester End Examination; May - 2022
 Engineering Mechanics
 (Common to All Branches)

Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Apply the knowledge of basic science and mathematics to classify the force systems and Compute its resultant.

CO2: Analyse the system of forces in equilibrium with or without frictional forces.
CO3: Locate the centroid and composite moment of inertia of irregular and built up sections.
CO4: Analyse the problems with respect to linear motion, curvilinear motion and energy.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for a Maximum of $\mathbf{1 8}$ marks from each unit.

Q. No.	$\begin{gathered} \text { Questions } \\ \text { I : PART - A } \end{gathered}$	Marks 10	BLs	COs	POs
I a.	With an example, explain resolution of forces.	2	L2	CO1	PO1
b.	Define statically determinate beams and give examples.	2	L3	CO 2	PO1
c.	Differentiate between centroid and centre of gravity.	2	L2	CO3	PO1
d.	Define the terms: i) Radius of gyration, ii) Polar moment of inertia.	2	L2	CO3	PO1
e.	Define the terms: i) Projectiles velocity, ii) Super elevation.	2	L1	CO 4	PO1
	II : PART - B	90			
	UNIT - I	18			
1 a. b.	Define moment of a force and force. List the characteristics of force. Determine the resultant of the system of forces acting on a lamina shown in Fig.1(b). Locate its ' x ' intercept from ' O '	9	L2	CO 2	PO1

c. Determine angle θ for the system of strings ABCD in equilibrium as shown in Fig.1(c)

UNIT - II
2 a. With a neat sketch, describe the different types of supports.
b. Determine whether the 50 kg block shown in Fig.2(b) is in equilibrium and find the magnitude and direction of the frictional force when; (i) $\mathrm{P}=100 \mathrm{~N}$, (ii) $\mathrm{P}=200 \mathrm{~N}$, take $\mu_{\mathrm{s}}=0.3$ and $\mu_{\mathrm{k}}=0.2$.

Fig -2(b)
c. Find the support reactions shown in beam shown in Fig. 2(c).

UNIT - III
3 a. Using method of integration, determine the x and y coordinates of centroid of rectangle.
b. Locate the centroid of the area shown in Fig. 3 (b). All dimensions are in mm.

9 LB CO
PO
c. Locate centroid with respect to ' O ' for the lamina shown in Fig. 3(c).

$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 3 \mathrm{PO} 3$

Contd... 3

UNIT - IV
4 a. State and prove perpendicular axis theorem.
b. Find the polar radius of gyration for the area shown in Fig. 4(b). All dimensions are in mm.

c. Determine the second moment of the area about the horizontal centroidal axis as shown in Fig. 4(c). Also find radius of gyration. All dimensions are in mm.

UNIT - V
5 a . A stone is dropped from the top of the tower 50 m high. At the same time another stone is thrown up from the tower with a velocity of $25 \mathrm{~m} / \mathrm{s}$. At what distance from the top and after how much time the two stones cross each other?
b. A projectile is projected from a point at an angle of elevation of 30° with a velocity of $600 \mathrm{~m} / \mathrm{s}$. Find the velocity of motion of the particle at the end of, i) 25 seconds and ii) 40 seconds.
c. Calculate the super elevation of the rail on a curved track for a locomotive running at 60 kmph , gauge and radius of curvature being 1.68 m and 800 m respectively. Find the lateral thrust exerted on the outer rail, if the speed of the locomotive is changed to 80 kmph , weight of locomotive is 1000 kN .

