U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, B.E. - Semester End Examination; May - 2022

Basic Electronic Devices and Circuits

(Common to All Branches)

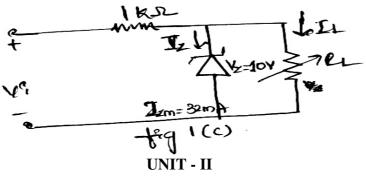
Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

CO1: Apply the knowledge of physics and mathematics to understand the principle of devices, number system, circuits and communication system.

CO2: Analyze the analog and digital circuits.

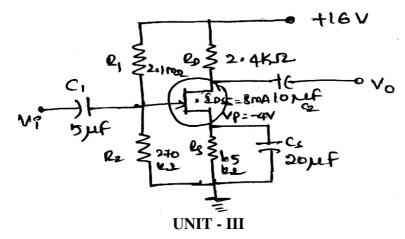

CO3: Design circuits for rectification, regulation, amplification and filtering.

CO4: Design the combination logic circuit.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions I: PART - A	Marks 10	BLs	COs	POs
I a.	For a half wave rectifier, whose input is sine wave of 14 sinwt,	2	CO2	L2	PO2
	determine the V_{DC} and V_{PIV} .				
b.	Write the structure of n-channel depletion type MOSFET.	2	CO1	L1	PO1
c.	List the applications of operational amplifiers.	2	CO1	L1	PO1
d.	Write the 2's compliment of $(10010)_2$.	2	CO4	L3	PO2
e.	Write the expression for total power of the AM modulated signal.	2	CO5	L3	PO2
	II : PART - B	90			
	UNIT - I	18			
1 a. I	ine Q point. Explain the DC load line analysis for series diode		CO2	L2	PO2
	configuration with neat circuit diagram and characteristics.		002	22	- O-
b.	Explain the working of Half wave rectifier with its necessary diagram	9	CO2	L2	PO2
	and wave forms. Also determine PIV of a diode.		CO2	L	FU2
c.	For the network shown in Fig. 1(c) determine V_R and the range of R_L				
	and I_L that will result in V_L being maintained at 10 V and also				
	determine the maximum wattage rating of the diode (Given V_i =50 V).				
	e MAR	9	CO3	L3	PO3


18

2 a. Explain the construction and sketch the transfer characteristics for an n-channel depletion type MOSFET with $I_{DSS} = 10$ mA and $V_p = -4$ V.

9 CO2 L2 PO2

- Sketch and explain the construction of p-channel E-type MOSFET. Also analyze drain and transfer characteristics
- 9 CO₂ L2 PO₂

- c. Determine the following for the network shown below,
 - i) I_{DQ} and V_{GSQ}
- ii) V_{DS}

9 PO₂ CO₂ L3

- Analyze the working of an inverting op-amp amplifier with the help of neat diagrams and equations.
- 9 CO₂ L2 PO₂

18

- b. With neat circuit diagram, explain the following:
 - i) Voltage controlled voltage source
 - 9 L2 PO₂ CO₂ ii) Current controlled current source
 - iii) Voltage controlled current source
- Show the connection of an LM124 quad op-amp as a three stage amplifier with gains of +10, -18 and -27. Use a 270 k Ω feedback resistor for all three circuits. What output voltage will result for an input of 150 µV?
- 9 CO₃ L3 PO₃

UNIT - IV

- 18
- 4 a. Compute: i) $(FACE)_{16} = (?)_{10}$ ii) $(11111111)_2 = (?)_{10}$ iii) $(258)_{10} = (?)_2$ iv) Subtract using 2's complement $(15)_{10}$ – $(31)_{10}$
- 9 CO₄ L3 PO₂
- Simplify the following Boolean expression and realize using basic gates Y = (A+B)(B+C)(C+B).
- 9 CO₄ L3 PO₂
- Realize: i) OR using NOR only ii) AND using NAND only
- 9 CO₄ L3 PO₂

iii) XOR using NOR only

UNIT - V 18

- With a help of relevant sketch, waveform and equation explain 5 a. Amplitude Modulation (AM).
- 9 CO₅ L3 PO₂
- b. Write the block diagram of basic communication system and explain briefly.
- 9 CO₅ L3 PO₂
- c. Explain Optical Fiber Communication with neat block diagram and list the advantages of OFC.
- 9 CO₅ L3 PO₂