U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, B.E. - Semester End Examination; May - 2022

Engineering Mathematics - I

(Common to all Branches)

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1 Apply the knowledge of calculus to solve problems related to polar curves and its applications in determining the bentness of a curve.
- CO2 Explain mean value theorems and evaluate indeterminate form and power series using Taylor's and Maclaurin's series.
- CO3 Differentiate the function of several variables and composite functions. Evaluate the vector differentiation.
- CO4 Evaluate some standard integrals by applying reduction formula and solve application problems.
- CO5 Solve differential equations of first order and solve application problems in engineering field.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any Two sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

	II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.									
Q. No.	Questions	Marks	BLs	COs	POs					
	I : PART - A	10								
I a.	Find the angle between radius vector and the tangent for the curve $r = a(1-\cos\theta)$.	2	L1	CO1	PO1					
b.	Evaluate: $\lim_{x \to \frac{\pi}{2}} \frac{\log(\sin x)}{\left(\frac{\pi}{2} - x\right)^2}$.	2	L1	CO2	PO1					
c.	Find curl(curl \vec{A}), given that $\vec{A} = xy\hat{i} + y^2z\hat{j} + z^2y\hat{k}$.	2	L1	CO3	PO1					
d.	Evaluate: $\int_{0}^{\pi} \sin^{6} x \cos^{4} x dx$ using reduction formula.	2	L1	CO4	PO1					
e.	Define Bernoulli's equation linear in y.	2 90	L2	CO5	PO1					
	II : PART - B									
	UNIT - I	18								
1 a.	Find the angle of intersection of the curves $r = 2\sin\theta$, $r = \sin\theta + \cos\theta$.	9	L3	CO1	PO1					
b.	Find the radius of curvature for the curve $y = \frac{ax}{a+x}$, show that $\left(\frac{2\rho}{a}\right)^{2/3} = \left(\frac{x}{y}\right)^2 + \left(\frac{y}{x}\right)^2$.	9	L2	CO1	PO1					
c.	Find the evolute of the parabola $y^2 = 4ax$.	9	L3	CO1	PO2					
	UNIT - II	10								
2 0		18								
2 a.	State Lagrange mean value theorem. Verify the Lagrange mean value theorem for the function $\cos^2 x$ in $[0, \frac{\pi}{2}]$.	9	L2	CO2	PO1					
	uncotem for the function $\cos x \ m[0, \gamma_2].$									
b.	Expand $tan^{-1} x$ in powers of $(x-1)$ up to the terms containing fourth	9	L2	CO2	PO1					
	degree.									

P21MA101

Page No... 2

c. Evaluate:
$$\lim_{x\to 0} \left[\frac{1}{x^2} - \cot^2 x \right]$$
.

9 L2 CO2 PO2

UNIT - III

18

3 a. If
$$u = e^{ax - by} \sin(ax + by)$$
] show that $b \frac{\partial u}{\partial x} - a \frac{\partial u}{\partial y} = 2abu$.

9 L3 CO3 PO2

b. If z = f(x, y) where $x = e^{u} + e^{-v}$, $y = e^{-u} - e^{v}$ prove that,

$$x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} - \frac{\partial z}{\partial v}.$$

9 L3 CO3 PO2

c. If
$$\vec{F} = (x+y+az)\hat{i} + (bx+2y-z)\hat{j} + (x+cy+2z)\hat{k}$$
, find a, b, c such that $\vec{F} = 0$ and then find ϕ such that $\vec{F} = \nabla \phi$.

9 L2 CO3 PO2

that curl $\overrightarrow{F} = 0$ and then find ϕ such that $\overrightarrow{F} = \nabla \phi$.

UNIT - IV

18

Obtain the reduction formula for $\int \sin^n x \, dx$ and $\int_0^{\pi/2} \sin^n x \, dx$, n is a

CO₄ PO₁

positive integer.

b. Evaluate: $\int_{0}^{1} \frac{x^{\alpha} - 1}{\log x} dx$, $(\alpha \ge 0)$ using differentiation under the integral

9 L3 CO4 PO1

sign where α is the parameter. Hence find $\int_{0}^{1} \frac{x^3 - 1}{\log x} dx$.

Trace the curve $r = a(1 + \cos \theta)$, a > 0 [cardioid].

9 L2 CO4 PO1

UNIT - V

18

Define exact differential equation and solve, $\frac{dy}{dx} + \frac{y \cos x + \sin y + y}{\sin x + x \cos y + x} = 0$.

9 L1 CO5 PO1

orthogonal trajectories of the family of curves,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$$
, where λ is the parameter.

9 L2 CO5 PO2

A body of air at 25°C cools from 100°C to 75°C in one minutes. Find the temperature of the body at the end of 3 minutes from the original.

9 L3 CO5 PO2