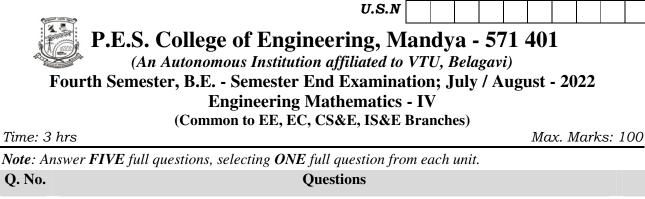
6

7

7

7



UNIT - I

- 1 a. Find a real root of the equation $x \log_{10} x = 1.2$ convert to five decimal places using the Newton-Raphson method.
 - b. Find real root of an equation $\cos x = 3x 1$ correct to three decimal place using Regula falsi method.
 - c. Find a real root of the equation $x^3 x 1 = 0$ using fixed point iteration method. Acceleration the convergence by Aitkin's Δ^2 method carry out three iterations.
- 2 a. Using Runge-Kutta method of fourth order. Find y (0.2) for the equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, 6

y(0) = 1 taking h = 0.1

- b. Apply modified Euler's method to find y(0.1) given that $\frac{dy}{dx} = x^2 + y$, y(0) = 1, by taking h = 0.05. Considering two approximations in each step.
- c. Apply Adam-Bashforth method to solve the equation $(y^2+1)dy x^2dx = 0$ at x = 1 given data y(0) = 1, y(0.25) = 1.0026, y(0.5) = 1.0206 and y(0.75) = 1.0679 (applying corrector formula twice).

UNIT - II

3 a.	Define vector space and subspace. Give with suitable examples	6							
b.	Find the change of basis matrix P from usual basis, $E = \{e_1, e_2, e_3\}$ of R^3 to the basis								
	S = {w ₁ = (1,1,1), w ₂ = (1,1,0), w ₃ = (1,0,0)}	7							
c.	Find Rank and nullity of the linear transformation.								
	$T = R^{3} \rightarrow R^{3}$ by $T(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z)$	3							
4 a.	. Apply Gauss-Seidal iterative method to solve the equations								
	27 x + 6y - z = 85, $6x + 15y + 2z = 72$, $x + y + 54 z = 110$ perform three	6							
	iterations.								
h	Solve by relevation method:								

b. Solve by relaxation method:

$$10 x - 2y - 2z = 6, \quad -x + 10y - 2z = 7, \quad -x - y + 10z = 8$$

P17MAES41

c. Determine the largest Eigen value and the corresponding Eigen vector of the matrix

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
 taking initially $\begin{bmatrix} 1, 0, 0 \end{bmatrix}^{\mathrm{T}}$ (perform six iterations) 7

UNIT – III

5 a. Show that f(z) = sinz is analytic and hence find f¹(z).
b. Find analytic function f(z) as a function of z given that the sum of its real and imaginary part is x³ - y³ + 3xy (x-y).
c. Find the bilinear transformation that maps the points Z₁ = 0, Z₂ = -i, Z₃ = 2i into W₁ = 5i , W₂ = ∞, W₃ = -i/3
6 a. Evaluate ∫₀²⁺ⁱ(z)² dz along the line x = 2y
6

b. Expand
$$f(z) = \frac{1}{(z-1)(2-z)}$$
 as Laurent's series valid, for
 $i \ge |z| \le 1$ (2)

1)
$$|z| < 1$$
 11) $|z| < 2$.

c. Using the Cauchy's residue theorem

$$\int_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)^{2}(z-2)}$$
 where C is the circle $|z| = 3$

UNIT - IV

- 7 a. In a certain distribution $\{x_i, f_i\}$ i = 1, 2, ...n. The first four moment about the point '5' are - 1.5, 17, - 30 and 108. Calculate Skewness and kurtosis.
 - b. Fit a parabola for the following data:

X:	1	2	3	4	5	6	7	8	9
Y:	2	6	7	8	10	11	11	10	9

c. If θ is the angle between the two regression lines, show that $\tan \theta = \left(\frac{1-r^2}{r}\right) \frac{\sigma x \sigma y}{\sigma^2 x + \sigma^2 y}$

8 a. The probability distribution of a finite random variable x (x) is given by the following table find the value of K, mean and variance

X _i :	-2	-1	0	1	2	3
$P(x_i)$:	0.1	k	0.2	2k	0.3	k

- b. The probability that a pen manufactured by a factory be defective is, $\frac{1}{10}$. If 12 such pens are manufactured. What is the probability that
 - i) Exactly 2 are defective
 - ii) At least 2 are detective
 - iii) None of them are detective

7

7

7

6

P17MAES41

Find;

7

- c. In a test an electric bulbs, it has found that the life time of a particular brand was distributed normally with an average life of 2000 hours and S.D of 60 hours. In a purchase 2500 bulbs, find the number of bulbs that are likely to last for
 - i) More than 2100 hours
 - ii) Less than 1950 hours

iii)Between 1900 to 2100 hours

Given $\phi(1.67) = 0.4525$ $\phi(0.83) = 0.2967$

UNIT - V

9 a. The joint distribution of two random variables x and y is as follows:

	XY	-4	2	7		
	1	1/8	1⁄4	1/8		
	5	1⁄4	1/8	1/8		
i)	E(x) and E	E(y)	ii) E(z	xy)	iii) $\sigma_{\rm x}$ and $\sigma_{\rm y}$	

b. Find the unique fixed probability vector for the regular stochastic matrix;

$$A = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

$$7$$

c. If *x* and *y* are continuous random variables the joint density function

$$f(x, y) = \begin{cases} c(x^2 + y^2) : 0 \le x \le 1\\ 0, other \ wise \end{cases}$$
7

Determine; i) Constant C ii) $P(x \le \frac{1}{2}, y \ge \frac{1}{2})$ iii) $P(\frac{1}{4} \le x \le \frac{3}{4})$

10 a. Obtain the series solution of the differential equation $\frac{d^2y}{dx^2} + xy = 0$ 6

- b. Obtain $J_n(x)$ as a solution of the Bessel's differential equation $x^2 y'' + xy' + (x^2 n^2) y = 0$ 7
- c. State Rodrigue's formula express $x^3 + x^2 + x + 1$ in terms of Legendre's polynomials. 7

* * * *