

Max. Marks: 100

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B. E. - Electronics and Communication Engineering

Semester End Examination; July / August - 2022

Digital Design Using Verilog HDL

Time: 3 hrs

Course Outcome

The Students will be able to:

CO1: To apply the knowledge of digital fundamentals to explain basic concepts used in Verilog HDL

CO2: To write a Verilog model for combinational and sequential circuits

CO3: To analyse the given digital circuit and develop Verilog model for given digital circuits.

CO4: To design any combinational and sequential circuits and develop Verilog model for the given inputs.

CO5: To verify the design through synthesis and demonstrate the application using EDA tools.

Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks. ii) PART-B Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

Q. No.	Questions I:PART - A	Marks 10	BLs	COs	POs
I a.	Mention data types used in verilog HDL.	2	L3	CO1	PO1
b.	Any two differences between tasks and functions.	2	L2	CO1	PO1
с.	Write a switch diagram for 2:1 multiplexer.	2	L3	CO1	PO1
d.	Define logic synthesis.	2	L1	CO1	PO1
e.	Define the components of a traditional verification flow.	2	L2	CO1	PO1
	II:PART - B UNIT - I	90 18			
1 a.	Explain system tasks relevant to verilog HDL.	9	L2	CO1	PO1
b.	Explain port declaration with an example using verilog code.	9	L2	CO1	PO1
с.	Define instantitation and instances? Write a verilog code for 4-bit ripple carry full adder to show instantitation and instances.	9	L1	CO1	PO1
	UNIT - II	18			
2 a.	Explain the blocking assignment statements and non-blocking assignment statements with relevant examples.	9	L2	CO1	PO1
b.	Write a note on the following loop statements:				
	i) While loop	9	L2	CO1	PO1
	ii) Forever loop				
с.	Explain sequential and parallel blocks with examples.	9	L2	CO1	PO1
	UNIT - III	18			
3 a.	Explain procedural continuous assignments with an example.	9	L2	CO1	PO1
b.	Explain different types of delay models with examples.	9	L2	CO1	PO1
c.	Develop the switch level verilog model stimulus for two inputs CMOS NOR gate.	9	L3	CO1	PO1

P18EC43			Page No 2		
	UNIT - IV	18	U		
4 a.	Develop a verilog model and stimulus for 4:1 MUX with UDP.	9	L3	CO1	PO1
b.	Explain simulation flow using PLI routines.	9	L2	CO1	PO1
c.	Explain basic synthesis design flow from RTL description to gate level description.	9	L2	CO1	PO1
	UNIT - V	18			
		10			
5 a.	Develop a verilog model for RTL description for news paper vending machine FSM.	9	L3	CO1	PO1
5 a. b.	Develop a verilog model for RTL description for news paper vending		L3 L2	CO1 CO1	101
_	Develop a verilog model for RTL description for news paper vending machine FSM.	9		CO1	101

* * * *