

Course Outco

CO1: Apply mathematical knowledge to understand DFT, FFT and Filters

CO2: Analyze discrete systems using DFT, FFT and filtering formulation

CO3: Design the FIR & IIR filters for given specification

The Students will be able to:

CO4: Implement the discrete-time systems using various approaches

CO5: Understand role of DSP in various applications

<u>Note:</u> i) **PART-A** is compulsory. One question from each unit for maximum of 2 marks. ii) **PART-B** Answer any **TWO** sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

Q. No.	Questions	Marks	BLs	COs	POs
	I:PART - A	10			
I a.	State periodicity and linearity properties of DFT.	2	L1	CO1	PO1
b.	What is the total number of complex multiplications and complex additions required in case direct computation of DFT?	2	L1	CO1	PO1
c.	What are the advantages of FIR filter?	2	L1	CO1	PO1
d.	List any two advantages of IIR filter.	2	L1	CO1	PO1
e.	The T.F. of a discrete causal system is given as follows:				
	$H(z) = \frac{1 - \frac{3}{4}z^{-1}}{1 + \frac{1}{4}z^{-1} - \frac{1}{8}z^{-2}}$	2	L1	CO4	PO1

Draw the direct form-I structure.

	II:PART - B UNIT - I	90 18			
1 a.	Find the N-point DFT of the sequence $x(n) = u(n) - u(n-N)$	9	L2	CO1	PO1
b.	Find the output $y(n)$ of a filter whose impulse response				
	$h(n) = \{1, 2, 3, 4\}$ and input signal to the filter is	9	L2	CO1	PO2
	$x(n) = \{1, 2, 1, -1, 3, 0, 5, 6, 2, -2, -5, -6, 7, 1, 2, 0, 1\}$ using over-lap add				
	method with 6 point circular convolutes.				
c.	State and prove Circular time shift and circular frequency shift properties of DFT.	9	L2	CO2	PO2
	UNIT - II	18			
2 a.	Develop the Radix-2 Decimates in frequency-FFT (DIF-FFT) algorithm for $N = 8$ and draw the signal flow graph.	9	L3	CO2	PO2

P18EC44			Pag	je No	. 2
b.	Find the sequence $x(n)$ using DIF-FFT algorithm, if the DFT of the	0	1.0	001	DOG
	sequence is $x(k) = \{0, 2+j2, -4j, 2-2j, 0, 2+2j, 4j, 2-2j\}$	9	L2	CO1	PO2
c.	What is Goertzel algorithm and obtain the direct form-II realization? If	0		a a	DOA
	$x(n) = \{1, 0, 1, 0\}$ find $x(2)$ using Goertzel algorithm.	9	L2	CO2	PO2
	UNIT - III	18			
3 a.	Design a LPF FIR filter using rectangular window with $M = 7$ and with a				
	cutoff frequency of 1 rad/sec. Also obtain the magnitude response of the system.	9	L4	CO4	PO2
b.	Explain the following:				
	i) Rectangular window	0	10	CO4	DOO
	ii) Bortlett window	9	L2	CO4	PO2
	ii) Hamming window				
c.	Explain frequency sampling technique of FIR filter design.	9	L2	CO4	PO2
	UNIT - IV	18			
4 a.	For the given specification find the system function of a Butterworth LPF,				
	$0.8 \le \left H\left(j\Omega \right) \right \le 1; \ 0 \le \Omega \le 0.2\pi$	9	L4	CO4	PO2
	$ H(j\Omega) \le 0.2; \ 0.6\pi \le \Omega \le \pi$				
b.	Explain how an analog filter is mapped onto a digital filter using Impulse	9	L3	CO3	PO2
	Invariance Method (IIM). What are the limitations of this method?	,	25	005	102
c.	Design a digital low pass Butterworth filter using bilinear transformation				
	with pass band and stop band frequency are 200 Hz and 500 Hz	9	L5	CO3	PO2
	respectively. Pass band and stop band attenuation are -5 dB and -12 dB				
	respectively. Sampling frequency is 5 KHz.				
	UNIT - V	18			
5 a.	Obtain the DF-I, DF-II, cascade and parallel from realization of the				
	following system:	9	L4	CO4	PO2
	y(n) = 0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2)				
b.	For the given impulse response draw direct form, cascade and linear phase.				
	$h(n) = \left(\frac{1}{2}\right)^{n} \left[u(n) - u(n-4)\right]$	9	L4	CO4	PO2
c.	Obtain a parallel form realization for the system				
	$H(z) = \frac{8z^3 - 4z^2 + 11z - 2}{\left(z - \frac{1}{4}\right)\left(z^2 - z + \frac{1}{2}\right)}$ Also find the difference equation for the	9	L4	CO4	PO2

transfer function.