Time: 3 hrs

The Students will be able to:

Course Outcomes

Max. Marks: 100

CO1: Apply the knowledge of physics and Vector calculus to understand EM fields and waves.

CO2: Analyse Electric and magnetic fields and waves and its effect in various charge distribution of medium

CO3: Compute the electric and magnetic field potentials due to different charge distributions and boundary conditions

CO4: Analyze time-varying electromagnetic fields and waves as governed by Maxwell's equations

CO5: Examine the effects and losses of medium on wave and various parameters influencing wave propagation

<u>Note</u>: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.			BLs	COs POs
	I:PART - A	10		
I a.	What are the sources of electric field and magnetic field?	2	L1 (CO1 PO1
b.	Define potential difference.	2	L1 (CO3 PO2
c.	State Biot-savarts law.	2	L1 (CO2 PO1
d.	Define dielectric strength.	2	L1 (CO1 PO1
e.	What is critical frequency?	2	L1 (CO5 PO1
	II:PART - B	90		
	UNIT - I	18		
1 a.	Explain the concept of electric field intensity at a point in an electric field			
	produced by a point charge. Show that the electric field intensity at any point	0		
	due to an infinite sheet of charge is independent of the distance to the point	9	L2 (CO2 PO2
	from the sheet.			
b.	State and explain Gauss's law and verify it for a point charge. Find the electric			
	flux density \vec{D} at (1, 3, -4)m for a point charge Q = 30 nC located at the origin	9	L2 (CO2 PO2
	in Cartesian coordinates.			
c.	State and explain Gauss divergence theorem. If,			
	$\vec{D} = xy^2 z^2 \vec{ax} + s^2 yz^2 \vec{ay} + x^2 y^2 z \vec{az} c / m^2$ find;	0		
	i) An expression for ρ_V	9	L2 (CO2 PO2
	ii) The total charge within the cube defined by $0 \le x \le 2$, $0 \le y \le 2$, $0 \le z \le 2$			
	UNIT - II	18		
2 a.	Find an expression establishing the relationship between electric field intensity			
	and gradient of potential. Find the electric field strength \vec{E} at the point (1, 2, -1)	9	L2 (CO2 PO2
	given the potential $V = 3x^2y + 2yz^2 + 3xyz$			

Contd...2

P18EC46		P	age No 2
b.	What is dipole moment? Find V at P $(2, 3, 4)$ for a dipole having moment	0	
	$\vec{p} = 3\vec{ax} - 5\vec{ay} + 10\vec{az} \ nCm$ located at $Q(1, 2, -4)$ in free space.	9	L2 CO3 PO3
c.	Starting with Gauss law in point from obtain the Poisson's equation in		
	Cartesian co-ordinates. Deduce Laplace's equation from it. Verify that the	9	L3 CO3 PO3
	potential field, $V = 2x^2 - 3y^2 + z^2$, satisfies the Laplace's equation.		
	UNIT - III	18	
3 a.	State and prove Ampere's circuital law and apply it to a straight infinitely long	9	
	conductor to calculate the magnetic field intensity.	,	
b.	Discuss the concept of vector magnetic potential and arrive at an expression for		
	it. Given the vector magnetic potential $\vec{A} = x^2 \vec{ax} + 2yz \vec{ay} + (-x^2)\vec{az}$ find the	9	
	magnetic flux density.		
c.	Discuss the magnetic boundary conditions for \vec{B} and \vec{H} at the interface	0	
	between two different magnetic materials.	9	
	UNIT - IV	18	
4 a.	Derive Maxwell's equation from Faraday's law. Find the frequency at which		
	conduction current density and displacement current density are equal in a	9	
	medium with $\sigma = 2 \times 10^{-4}$ mho/m and $\epsilon_r = 81$.		
b.	Explain the different types of polarization of the sinusoidal wave. The electric		
	field of a uniform plane wave is given by,		
	$\vec{E} = 10\sin\left(3\pi x 10^8 t - \pi z\right)\vec{ax} + 10\cos\left(3\pi \times 10^8 t - \pi z\right)\vec{ay} \ V/m$	9	
	Find the polarization of the wave.		
c.	State and prove Poynting's theorem.	9	
	UNIT - V	18	
5 a.	Explain the occurrence of surface wave propagation and discuss the dependence	9	
	of ground attenuation factor with numerical distance.)	
b.	Derive the expression for the field strength due to space wave in terms of height	9	
	of receiving and transmitting antenna and distance between them.	-	
c.	Derive the equation for skip distance in terms of maximum usable frequency.		
	An high frequency radio communication is to be established between two		
	points on the earth's surface. The points are at a distance of 2000 km. The	9	
	height of the ionosphere layer is 200 km and critical frequency is 6 MHz. Find		
	maximum usable frequencies.		