

range of the signal and compute their signal energy for the following 1. X (3t) 2. 2x (t) 3. 9 X (t-4) = 4. X (-t)

P18EE		2
	UNIT - II	18
2 a.	Given input $x(n) = 2^n u(-n)$ and impulse response $h(n) = u(n)$ Draw $h(n)$ and $x(n)$; Find	9
	the response $Y(n)$ of the system.	7
b.	State the different properties of impulse response and explain any two.	9
с.	Analyze the f LTI system characterized by impulse response	0
	$h(n) = 4^{-n}u(2-n)$ for Causal, Memory and stability.	9
	UNIT - III	18
3 a.	Determine the response of first order discrete time system governed by the difference	0
	equation, $y(n) = -0.5y(n-1) + x(n)$ The input is Unit step and Initial condition $y(-1) = 0$	9
b.	Determine the output of the LTI system characterized by the differential	
	equation $\frac{d^2 y(t)}{dt^2} + 3 \frac{dy(t)}{dt} + 2y(t) = x(t)$ with initial condition $y(0) = 3$ and $\frac{dy(t)}{dt t = 0} = -5$	9
	for the input $x(t) = 2u(t)$.	
c.	Determine the Fourier coefficient for the periodic signal $x(t) = e^{-t}$ with period T = 1 sec.	9
	Draw its amplitude and phase spectrum.	9
	UNIT - IV	18
4 a.	Define and demonstrate the following properties of Discrete Time Fourier Transform:	
	i) Time Convolution Property	9
	ii) Time Scaling property	
b.	Apply the property of Fourier transform to find X[w];	
	$x(t) = \frac{2a}{a^2 + (2\pi t)^2}$	9
	$x(t) = (t+1); -1 \le t \le 0$	
	$= (-t+1); 0 \le t \le 1$	
с.	The differential equation of the system is given as,	
	$\frac{d^2}{dt^2}y(t) + 5\frac{d}{dt}y(t) + 6y(t) = -\frac{d}{dt}x(t)$	9
	Determine the frequency response and impulse response of the system.	
	UNIT - V	18
5 a.	Expand the properties of ROC of Z-transforms.	9
b.	Determine the Z transform of $x(n) = -u[-n-1] + \left[\frac{1}{4}\right]^n u(n)$. Depict the poles and zeroes	9
	with ROC on the Z – plane.	
c.	Find the inverse ZT of $x[z] = \frac{z(z-1)}{(z+1)(z+2)^3}$; $ROC Z > 2$.	9

* * * *