U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; July / August - 2022 Electro Magnetic Field Theory

Time: 3 hrs Max. Marks: 100

Course Outcome

The Students will be able to:

- CO1: Apply the knowledge of 8-bit processor to understand the 16-bit processor
- CO2: Apply the concepts of 8-bit processor to analyze instruction sets and other features in MSP430.
- CO3: Discuss and Analyze the different peripheral components associated with MSP430
- CO4: To develop logical skills to write programs in MSP430 for the given Engineering Problems
- CO5: To analyze the developed code using modern engineering tools.

Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks.

ii) PART-B: Answer any **TWO** sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

Q. No.	Questions I: PART - A	Marks 10	BLs	COs
I a.	What is Gaussian surface? What are the conditions to be satisfied in	2	L2	CO1
	special Gaussian surface?			
b.	What is an equipotential surface?	2	L1	CO2
c.	Give the applications of Stoke's theorem	2	L2	CO3
d.	Define Magneto statics and give an example.	2	L1	CO4
e.	Mention the properties of uniform plane wave.	2	L2	CO5
	II : PART - B	90		
1 -	UNIT - I	18	T 2	CO1
1 a.	Develop an expression for EFI due infinite sheet charge.	9	L3	CO1
b.	Analyze and prove the divergence theorem for a shell region enclosed by			
	spherical surface at $r = a$ and $r = b$ (b>a) and centered at origin, if	9	L4	CO1
	$\overline{D} = 5 \mathrm{r} \overline{a}_{\mathrm{r}} \mathrm{c/m}^2$ and Evaluate divergence theorem precisely.			
c.	A 2 μC point charge is located at A (4, 3, 5) in free space. Evaluate $E_{\rho}, E_{\phi,}$	9	īΛ	CO1
	and E_z at P (8, 12, 2).	9	L+	COI
	UNIT - II	18		
2 a.	Estimate and analyze the work done in carrying a -2 C charge from			
	P_1 (2, 1, -1) to P_2 (8, 2, -1) in the field $\overline{E} = \overline{a}_x y + \overline{a}_y x$ V/m.	9	IΛ	CO2
	i) Analog the parabola $x=2y^2$	9	L /1	COZ
	ii) Along the straight line joining P ₁ and P ₂			
b.	A uniform surface charge density of 20 n c/m² is present on the spherical			
	surface r=0.6 cm in free space.			
		9	L4	CO2

- i) Find the absolute potential at P(r=1 cm, θ =25°, ϕ =50°,):
- ii) Evaluate V_{AB} , given points A(r = 2 cm, θ =30°, ϕ =60°) and B(r = 3 cm, θ =45°, ϕ =90°)
- c. State and prove uniqueness theorem.

9 L3 CO2

UNIT - III

18

- 3 a. Analyze and develop an expression for boundary conditions between conductor and free space.
- 9 L3 CO3

- b. Let, $J = \frac{25}{\rho} \frac{1}{a_{\rho}} \frac{20}{\rho^2 + 0.01} \frac{1}{a_{z}} \text{ A/m}^2$
 - i) Find the total current crossing the plane Z=0.2 in the a_z direction for ρ <0.4

9 L4 CO3

- ii) Calculate $\partial \rho_v / \partial t$
- iii) Find the outward current crossing the closed surface defined by $\rho = 0.01, \, \rho = 0.4, \, Z = 0, \, \text{and} \, Z = 0.2.$
- c. Two perfectly-conducting cylindrical surfaces are located at $\rho=3$ and $\rho=5$ cm. The total current passing radially outward through the medium between the cylinders is 3 A dc. Assume the cylinders are both of length 'l'.
 - i) Find the voltage and resistance between the cylinders, and 'E' in the 9 L4 CO3 region between the cylinders, if a conducting material having $\sigma = 0.05$ S/m is present for $3 < \rho < 5$ cm.
 - ii) Show that integrating the power dissipated per unit volume cover the volume gives the total dissipated power.

UNIT - IV 18

- 4 a. Develop and analyze the magnetic field intensity on the axis of a circular loop conductor using Biot-Savart law.
- 9 L3 CO4

L4 CO4

b. The magnetic field intensity is given in a certain region of space as:

Let $\overline{H} = \frac{x+2y}{z^2} \overline{a}_y + \frac{2}{z} \overline{a}_z \text{ A/m}$

- i) Find ΔxH ii) Find J 9
- iii) Use J to find the total current passing through the surface z = 4, 1 < x < 2, 3 < y < 5, in the a_z directions. Show that the same result is obtained using the other side of Stoke's theorem.
- Develop and explain scalar magnetic potential and vector magnetic
 potential

 9 L3 CO4

18EE45			Page No 3
	UNIT - V	18	
5 a.	Analyze and develop expressions for general wave equation.	9	L3 CO5
b.	Develop and analyze the magnetic boundary conditions at the boundary	9	L3 CO5
	between two permeabities of medium.		L3 CO3
c.	State and explain poynting theorem and Let $\mu = 3 \times 10^{-5}$ H/m, and		
	$\epsilon = 1.2 \times 10^{-10}$ F/m, and $\sigma = 0$ everywhere. If $H = 2 \cos(10^{10} t - \beta x)$ a_z A/m,	9	L4 CO5
	use Maxwell's equations to obtain expressions for 'B', 'D', 'E' and ' β '.		

P18EE45

* * * *