U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Computer Science and Engineering Semester End Examination; July / August - 2022 AVR Microcontroller

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1--Compare and contrast Microprocessor and Microcontroller
- CO2- Code simple AVR assembly language instructions
- CO3- Code assembly language to use the ports for input or output
- CO4- Code c program for time delay, logical and arithmetic operations and fro data serialization
- CO5- Interfacing the keypad to the AVR using assembly and C

Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks.

ii) PART-B: Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

		· ·		
Q. No.	Questions	Marks	BLs	COs
	I : PART - A	10		
I a.	Discuss the following with respect to ATmega169:			
	i) Size of ROM			
	ii) Size of PC	2	L2	CO2
	iii) Last address of the location in code ROM			
	iv) Is it byte addressable or word addressable?			
b.	Show a simple AVR code to send 0X99 to Port B and Port C	2	L1	CO3
c.	Determine the content of R1 register and status register after the execution			
	of the following instruction by assuming $R1 = \$95$ and $R2 = \$4F$ $CF = 1$	2	L2	CO4
	ADC R1,R2			
d.	List the three parts of Macro.	2	L1	CO4
e.	Why is the use of packed BCD preferable to ASCII.	2	L2	CO2
	II : PART - B	90		
	UNIT - I	18		
1 a.	Differentiate between;			
	i) Micro processor and Microcontroller	9	L2	CO1
	ii) Harvard Architecture and Vonnuman architecture	9	L2	COI
	iii) SRAM and DRAM			
b.	Explain AVR status register what is largest hex value that can be moved	9	L2	CO1
	into a location in the data memory? What is its decimal equivalent?	9	L2	COI
c.	With figure, explain data memory for AVR's with extended I/O memory.	0	1.2	CO1
		9	L2	CO1

UNIT - II

	UNII - II	10		
2 a.	Explain the following instruction with an example:			
	i) BREQ	(1.0	CO2
	ii) CALL	6	L2	CO3
	iii) CBI			
	ii) using stack write a program to swap two number	3	L3	CO3
b.	Name the ports of 40 pin AVR and explain. A switch is connected to PB3.			
	Using bit manipulation instruction write a program to check the status of			
	switch and perform the following:	9	L2	CO3
	if $s_w = 0$ send letter 'N' to port D			
	if $s_w = 1$ send letter 'Y' to port D			
c.	I) Explain the following instruction with an example:	6	1.2	CO2
	i) RJMP ii) SBIS iii) BRLO	6	L2	CO3
	II) Using out instruction for AVR chip write sequence of instruction to	3	L2	CO3
	toggle all the bits of PORT B, PORTC and PORT D continuously	3	L2	COS
	UNIT - III	18		
3 a.	Explain the following instruction with syntax and example.			
	i) ADC ii) AND iii) BRVS			
	also determine the content of R20 after the execution of each instruction			
	show each step	9	L2	CO4
	i) LDI R20, 0X56 ii) LDI R20, 0X39	9	LZ	CO4
	swap R20 SEC			
	ROR R20 ROL R20			
	ROR R20 ROL R20			
b.	Explain the difference between C and V flags and where each one is used.			
	Assume port B is an input port connected to temperature sensor. Write a			
	program to read the temperature and test it for value 75. According to the			
	test result place the temperature value in the register indicated by the	9	L3	CO3
	following	,	L3	CO3
	If $T = 75$ $R16 = T$ $R17 = 0$ $R18 = 0$			
	T > 75 $R16 = 0$ $R17 = T$ $R18 = 0$			
	T < 75 $R16 = 0$ $R17 = 0$ $R18 = T$			
c.	I) Explain the following instruction with an example:			
	i) ex-OR ii) NEG iii) ASR	6	1.2	CO2

P18CS45			Page No 3	
II) Write a code to add two signed number stored at 0X200 and 0X201				
the result is stored at 0X202. If the result is not collect the program	3	L2	CO3	
should put 0XAA to Port A char R21				
UNIT - IV	18			
4 a. Show code to convert packed BCD to two ASCII numbers and place them in R21 and R22	9	L2	CO3	
b. Explain the following addressing mode with an example to each:i) Register ii) Direct iii) Register indirect	9	L2	CO3	
c. i) Define macro and explain the same with an example. Also list the advantage of it	5	L2	CO3	
ii) Differentiate between macro and subroutine. Which one will use more flash ROM	4	L2	CO2	
UNIT - V	18			
5 a. i) List and explain the ways to create time delay in C. Also list factor that can affect delay size	4	L2	CO4	
ii) Write an AVR C program to toggle all the pins of Port C continuously with delay	5	L3	CO4	
b. Write an AVR C program to covert \$FD to decimal and display the digits on PB, PC and PD	9	L3	CO4	
c. Explain the interfacing of keyboard to AVR with flowchart and figure.	9	L2	CO5	