U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Sixth Semester, B.E. - Computer Science and Engineering
Semester End Examination; July / Aug. - 2022
Compiler Design

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

CO1: Design simple lexical analyzer.

CO2: Construct simple top down parser for a given context free grammar.

CO3: Construct simple bottom up parser for a given context free grammar.

CO4: Apply different syntax directed translation schemes.

CO5: Generate intermediate and machine dependent code.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I: PART - A	10			
I a.	Define pattern and lexeme.	2	L2	CO1	PO1
b.	What is ambiguous grammar?	2	L1	CO2	PO1
c.	What is Handle?	2	L1	CO3	PO1
d.	Define syntax directed definition.	2	L1	CO4	PO1
e.	What is a flow graph?	2	L1	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
1 a.	Explain the concept of input buffering in the lexical analysis.	9	L1,2	CO1	PO1,2
b.	Give the regular expression and finite automata for the specification and recognition of identifier, constants and logical operators.	9	L5	CO1	PO1,2
c.	Briefly explain different phases of compiler taking the example statement; position = initial + rate $*$ 60.	9	L1,2	CO1	PO1,2
	UNIT - II	18			
2 a.	Define left recursion, left factoring. Write an algorithm used for eliminating left recursion.	9	L1	CO2	PO1,2
b.	Write an algorithm for recursive decent parsing with an illustrative example.	9	L3	CO2	PO1,2
c.	Give algorithm for first and follow set construction and also compute first and follow for the give grammar. $E \to TE^1; E^1 \to +TE \mid E; T \to FT^1;$ $T^1 \to *FT^1 \mid E, \ F \to (E) \mid id$	9	L4	CO3	PO1

P18CS	Page No 2		
	UNIT - III	18	
3 a.	Write an algorithm for shift reduce parser with example.	9	L3 CO3 PO1,2
b.	consider the following grammar:		
	$E \rightarrow E + T \mid T; T \rightarrow T^* \mid F \mid F; F \rightarrow (E) \mid id$	9	L3 CO3 PO1,2
	Compute canonical collection of sets of LR(0) items.		
c.	Write an algorithm to construct SLR parsing table and construct		
	SLR parsing tale for the grammar:	9	L3 CO3 PO1,2
	$E \rightarrow E + T \mid T; T \rightarrow T*F \mid F; F \rightarrow (E) \mid id$		
	UNIT - IV	18	
4 a.	Write the SDD for simple desk calculator and give annotated parse	9	12 CO4 DO12
	tree for 3*5+4n.	9	L3 CO4 PO1,2
b.	Explain in detail different storage allocation strategies.	9	L2 CO4 PO1,2
c.	Explain the following with an example:		
	i) Inherited attribute	9	L2 CO4 PO1,2
	ii) Synthesized attribute		
	UNIT - V	18	
5 a.	What are the basic blocks? Explain in detail DAG representation of	9	L1,2 CO5 PO1
	basic blocks.		L1,2 CO3 FO1
b.	Briefly explain the different types of intermediate codes for the	9	12 CO5 DO12
	expression $a := b^*-c+b^*-c$.	9	L2 CO5 PO1,2
c.	Explain various issues in the design of code generation.	9	L2 CO5 PO1