U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Sixth Semester, B.E. - Civil Engineering
Semester End Examination; July / Aug. - 2022
Geotechnical Engineering - I

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

CO1: History of soil mechanics, origin and formation of soil.

CO2: Clay mineralogy and soil structure, soil as three phase system and inter relationship.

CO3: Index properties and their determination, classification of soil.

CO4: Flow of water through soils, effective stress concept, compaction of soil.

CO5: Consolidation of soil and shear strength of soil.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 n Questions	Marks		COs	POs
2.110.	I : PART - A	10	223	0.00	1 00
I a.	Define void ratio, porosity, and degree of saturation with the help of 3 phase diagram.	2	L1	CO1	PO1
1.		2	т 1	CO2	DO2
b.	Define liquid limit and plastic limit.	2	L1	CO2	
c.	Define seepage and superficial velocity.	2	L1	CO2	PO2
d.	Define normally and under consolidated soil.	2	L1	CO3	PO7
e.	Define sensitivity of clay.	2	L1	CO4	PO2
	II : PART - B	90			
	UNIT - I	18			
1 a.	With sketch, explain the common clay minerals.	9	L2	CO1	PO1
b.	With usual notations prove that, $r_d = \frac{G r_w}{1+e}$.	9	L3	CO1	PO1
c.	A soil sample has a porosity of 40%. The specific gravity of solids				
	is 2.70. Calculate; i) Void ratio				
	ii) Dry density	9	L2	CO1	PO1
	iii) Unit weight if the soil is 50% saturated				
	iv) Unit weight if the soil is completely saturated				
	UNIT - II	18			
2 a.	Explain determination of in-situ density of soil by core cutter method.	9	L2	CO2	PO2
b.	A liquid limit test on clay sample gave following results. The plastic				
	limit of soil is 20% and natural waste content is 60%. Plot flow curve				
	and obtain liquid limit, plasticity index and toughness index.	9	L2	CO2	PO2
	Number of blows 12 18 22 34				
	Water content (%) 56 52 50 45				
C	Evnlain the plasticity chart and its importance	O	1 2	CO2	D∩3

18CV6	52		Page No 2
	UNIT - III	18	
3 a.	Write the assumptions and limitations of Darcy's law for the flow through soil.	9	L2 CO2 PO2
b.	Calculate the horizontal and vertical permeability of a soil deposit		
	consisting of 3 layers 150 cm, 180 cm and 200 cm thickness with	9	L2 CO2 PO2
	permeability of 10^{-5} , 10^{-7} and 10^{-9} m/s.		
c.	Explain the factors affecting compaction.	9	L3 CO2 PO2
	UNIT - IV	18	
4 a.	Write the assumptions and limitations of Terzaghi's one dimensional consolidation theory.	9	L2 CO3 PO7
b.	In a consolidation test of soil sample 20 mm in thickness took 28 min		
	to reach 90% consolidation under two way drainage condition, for the		
	same soil in the field, what would be the time taken in days for 50%	9	L3 CO3 PO7
	and 90% consolidation? If the thickness of the soil layer is 4 m and if		
	there is: i) One drainage, and ii) Two drainage.		
c.	Explain how pre-consolidation pressure is determined by Casagrande's method?	9	L2 CO3 PO7
	UNIT - V	18	
5 a.	Explain Mohr-Coulomb failure theory of soil.	9	L2 CO4 PO2
b.	In direct shear test was carried out on a cohesive soil sample and the		
	following results were obtained. What would be the deviator stress at		
	failure of a tri-axial test is carried out on the same soil with cell	0	1.2 CO4 DO2
	pressure of 150 kN/m ² ?	9	L3 CO4 PO2
	Normal stress (kN/m ²) 150 250		
	Shear stress (kN/m ²) 110 120		
c.	Explain the tri-axial shear test under different drainage conditions.	9	L2 CO4 PO2

P18CV62