P18CV644 Page No... 1

U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, B.E. - Civil Engineering Semester End Examination; July / Aug. - 2022 **Traffic Engineering**

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

CO1: Understand the human factors and vehicular factors in traffic engineering design.

CO2: Conduct different types of traffic surveys and analysis of collected data.

CO3: Understand the concept of traffic signal design and influence of traffic on environment.

CO4: Understand the basic knowledge of transportation management and ITS.

Note: I) PART - A is compulsory. Two marks for each question.

II)	PART - B : Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of I	8 marks f	rom ea	ch unit.	
Q. No.	Questions	Marks	BLs	COs	POs
	I: PART - A	10			
I a.	List the static and dynamic parameters considered in vehicular	2	L1	CO1	1,7
	characteristics.				
b.	List the methods of conducting O & D studies.	2	L1	CO2	3,4
c.	List any 4 factors considered in design of rotary intersection.	2	L1	CO3	3,7
d.	List the advantages of integration of public transportation.	2	L1	CO3	3,7
e.	Define TDM [Travel Demand Management].	2	L1	CO4	4,5,11
	II : PART - B	90			
	UNIT - I	18			
1 a.	Explain the various human characteristics affecting road design and	9	L2	CO1	1,7
	traffic performance.		L2	COI	1,7
b.	Discuss briefly on the scope of traffic engineering.	9	L2	CO1	1,7
c.	A passenger car weighing 2 tonnes is required to accelerate at rate of				
	3 m/s ² in the first gear from a speed of 10 kmph to 20 kmph.				
	The gradient is+1% and the road have a bituminous surfacing.				
	The Frontal projection area of the car is 2.15 m ² . The car tyres have				
	a radius of 0.33 m. The rear axle gear ratio is 3.82:1 and first gear	9	L3	CO1	1,7
	ratio is 2.78:1. Calculate the engine horse power needed and				
	the speed of the engine. Make suitable assumptions. Coefficient of				
	air resistance = 0.39, coefficient of rolling resistance = 0.02,				
	tyre deformation factor = 0.935 , transmission efficiency = 0.9 .				
	UNIT - II	18			
2 a.	Discuss the objectives of traffic volume studies and speed and	0	τ.ο	CO2	2.4
	delay studies.	9	L2	CO2	3,4
b.	Discuss briefly about road side interview and home interview			~	
	method to connect O & D data.	9	L2	CO2	3,4
	Contd 2				

c. Spot speed studies were carried out at a certain stretch of a highway and the consolidated data collected are given below.

Speed range, kmph	0 to	10 to	20 to	30 to	40 to	50 to	60 to	70 to	80 to	90 to
No. of Vehicles	10	20	30	40	50	60	70	80	90	100
observed	12	18	68	89	204	255	119	43	33	09

9 L3 CO2 4,5

Determine;

- i) The upper and lower speed limit for regulation of traffic
- ii) Geometric design speed
- iii) Speed dispersion
- iv) Modal Speed

	iv) Modal Speed			
	UNIT - III	18		
3 a.	Discuss briefly about advantages and disadvantages of	9	12	CO3 3,7
	Grade separation.	,	LL	CO3 3,7
b.	List the various measures adopted to increase pedestrian safety.	9	L1	CO3 3,7
c.	The average normal flow of traffic on cross roads A and B during			
	design period are 400 and 250 PCU/hr, the saturation flow values on			
	these roads are estimated as 1250 and 1000 PCU/hr respectively.	9	L3	CO3 3,7
	The all red-time required for pedestrian crossing is 12 seconds.			
	Design two phase traffic signal by Webster's method.			
	UNIT - IV	10		
	UNII - IV	18		
4 a.	Discuss briefly about causes and effects of road accidents.	1 8 9	L2	CO3 3,7
4 a. b.		9		,
	Discuss briefly about causes and effects of road accidents.		L2 L2	CO3 3,7 CO3 3,7
	Discuss briefly about causes and effects of road accidents. Explain briefly the causes of air pollution and noise pollution	9	L2	CO3 3,7
b.	Discuss briefly about causes and effects of road accidents. Explain briefly the causes of air pollution and noise pollution due to traffic.	9	L2	,
b.	Discuss briefly about causes and effects of road accidents. Explain briefly the causes of air pollution and noise pollution due to traffic. Explain briefly the advantages and disadvantages of Non-Motorized	9	L2	CO3 3,7
b.	Discuss briefly about causes and effects of road accidents. Explain briefly the causes of air pollution and noise pollution due to traffic. Explain briefly the advantages and disadvantages of Non-Motorized transport.	9 9 9	L2	CO3 3,7
b. с.	Discuss briefly about causes and effects of road accidents. Explain briefly the causes of air pollution and noise pollution due to traffic. Explain briefly the advantages and disadvantages of Non-Motorized transport. UNIT - V	9 9 9 18	L2 L2	CO3 3,7 CO3 3,7