	U.S.N									
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, B.E Electronics and Communication Engineering Semester End Examination; July / Aug 2022										
Microwaves and Antennas Time: 3 hrs Max. Marks: 100										
Time: 3	S nrs Course Outcomes	1	Max. I	larks:	100					
$CO1 - A$ pr $CO2 - A$ $A\mu$ $CO3 - E$ ty $CO4 - A$ $CO5 - E$	lents will be able to: pply the knowledge of mathematics and EM fields to understand the parameter coperties of microwave devices and transmission lines. Inalyse the working and performance of microwave transmission lines, microw pplying basic concepts of Microwave theory. Examine the working and performance of microwave sources, microwave trans pes of antennas. Inalyse the working and performance of microwave devices and antenna array Design of helical, log-periodic and micro strip antennas	vave IC's o mission li	and ani	tennas						
) PART - A is compulsory. Two marks for each question.) PART - B : Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 i	marks fro	m each	unit.						
Q. No.	Questions I : PART - A	Marks 10			POs					
I a.	Define; (i) Reflection coefficient		T 4	000	DOG					
	(ii) Transmission coefficient of a transmission line	2	L4	CO2	PO2					
b.	Distinguish between E-plane Tee and H-plane Tee.	2	L4	CO3	PO2					
с.	Define Half power beam width and beam Efficiency.	2	L3	CO1	PO1					
d.	Write the directivity equation for broadside array and end fire array.	2	L4	CO4	PO2					
e.	Mention the 4 feeding method of Microstrip patch antennas.	2	L4	CO5	PO3					
	II : PART - B	90								
_	UNIT - I	18	÷ 4	a aa	D 00					
1 a.	Explain the mismatch losses in transmission lines.	9	L4	CO2	PO2					
b.	A 50 ohm lossless line connects a matched signal of 100 kHz to a									
	load of 100 ohm. The load power in 100 mW. Calculate;									
	(i) Voltage reflection coefficient of the load	9	L4	CO2	PO2					
	(ii) VSWR of the load									
	 (iii) Position of first V_{max} and V_{min} (iv) Impedance at V_{min} and V_{max} and values of V_{max} and V_{min} 									
2										
с.	Discuss the field equations for TE and TM waves in Rectangular waveguide.	9	L4	CO2	PO2					
	UNIT - II	18								
2 a.	With a neat diagram, explain the working of an E-plane Tee junction,	10								
∠ a.	also derive its scattering matrix.	9	L4	CO3	PO2					
b.	Discuss the construction and working of Precision rotary phase									
υ.	shifter with related equations and diagram. Contd 2	9	L4	CO4	PO2					

P18EC63			Page No 2			
с.	What is "Transferred electron effect" in Semiconductors? Explain the	9	L4	CO3	DOJ	
	TT mode LSA mode of operation of Gunn diode.	7	L4	COJ	102	
	UNIT - III	18				
3 a.	Discuss the following terms with respect to Antenna;					
	(i) Radiation pattern Lobes	9	L3	CO1	PO1	
	(ii) Directivity and Gain)	L3	COI	101	
	(iii) Radiation Efficiency					
b.	A lossless resonant half wavelength dipole antenna with input		L2	CO4	PO2	
	impedance of 73 ohms, is to be connected to a transmission line	9				
	whose characteristic impedance is 50 ohms. The pattern of antenna is	,				
	$U = B_0 Sin^3 \theta$. Calculate the overall maximum gain of the antenna.					
c.	Analyze the radiation mechanism for the following:					
	(i) Single-wire using electromagnetic radiation equation	9	L4	CO2	PO2	
	(ii) Two-wires and Dipole					
	UNIT - IV	18				
4 a.	Derive the equation for magnetic field Vector A and electric field	9	L4	CO3	PO2	
	components due to infinitesimal dipole antenna.	-	2.			
b.	Derive an array factor and HPBW expression in case of linear array	9	L4	CO4	PO2	
	of 'n' isotropic point source of equal amplitude and spacing.	,				
с.	Derive an expression for Power density and radiation resistance of	9	L4	CO4	PO2	
	infinitesimal dipole.	-	2.	00.	102	
	UNIT - V	18				
5 a.	Analyze the following for rectangular microstrip patch antenna with					
	related equation and diagrams;					
	(i) Effective length and width	9	L4	CO5	PO3	
	(ii) Resonant frequency					
	(iii) Design procedure					
b.	With a neat diagram, explain the working principle of Helical	9	L4	CO5	PO3	
	antenna along with the design procedure.	-		-		
с.	Discuss the design of dipole array with design equation and its	9	L4	CO5	PO3	
	design procedure.					
	ste ste ste					

* * * *