U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Sixth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; July / Aug. - 2022 Principles of Communications Systems

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Explain the basics of Electronic Communication System.
- CO2: Analyse at block level the use of various Digital Communication Techniques and Satellite Communication.
- CO3: Describe the concept of Networking and Local Area Networks.
- CO4: Explain the importance and working of Cell phone, multiplexing and de multiplexing in electronic communication systems.
- CO5: Understand the use and working of wireless technologies.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
I a.	List any two advantages of FM over AM.	2	L1	CO1	1
b.	Write the basic Principles of Frequency Modulation.	2	L2	CO4	1
c.	Explain in brief need of multiplexing in communication.	2	L1	CO3	1
d.	Illustrate a satellite orbits.	2	L1	CO2	1
e.	What is frequency reuse?	2	L2	CO5	1
	II : PART - B	90			
	UNIT - I	18			
1 a.	Define modulation index for AM and sketch the AM signal for three	9	12	CO1	1
	typical conditions.		LL	COI	1
b.	Write the block diagram of a general model of all communication	9	12	CO1	1
	systems and explain.		LL	COI	1
c.	Derive the total power equation in AM signal.	9	L3	CO1	1
	UNIT - II	18			
2 a.	Explain a super-heterodyne receiver with block diagram	9	L2	CO2	1
b.	Explain the four basic forms of pulse modulation with waveforms.	9	L2	CO2	1
c.	i) If the highest modulating frequency is 3 kHz and the maximum				
	deviation is 6 kHz, what is the modulation index? And also find the	4			
	bandwidth for 4 sidebands.		L3	CO2	2
	ii) List out the advantages and disadvantages of Frequency Modulation	5			
	(FM) over Amplitude Modulation (AM)				

P18ECO652			Page No 2		
	UNIT - III	18			
3 a.	Describe the general block diagram of the PCM system and explain.	9	L2	CO4	1
b.	Explain the TDM with neat diagram.	9	L3	CO3	1
c.	Describe the T-carrier system with diagram.	9	L2	CO3	1
UNIT - IV					
4 a.	State and explain the Kepler's third law. Support your answer with suitable equation.	9	L2	CO2	1
b.	With relevant diagram discuss frequency and polarization plan for a C-band communications satellite.	9	L2	CO2	1
c.	Explain with block diagram possible arrangement for a master antenna TV (MATV) system.	9	L2	CO2	1
UNIT - V					
5 a.	Explain the generic 4G LTE smart phone with aid of block diagram.	9	L2	CO3	1
b.	Explain 2G digital cell phone system with block diagram.	9	L2	CO5	1
c.	Explain the cellular concept and frequency reuse with relevant sketches.	9	L2	CO5	1