U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Sixth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; July / Aug. - 2022 Digital Signal Processing

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1 Apply the knowledge of DFT and FFT in its various applications.
- CO2 Transformation of digital signals into the frequency domain using FFT/DFT methods.
- CO3 Implementation or realization of different digital structures for IIR and FIR systems.
- CO4 Design and Implementation of IIR filters using Bilinear Transformation.
- CO5 Apply the knowledge of DSP Processor and its applications. Thermal energy conversion systems and applications.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any Two sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

11) PAK1 - B: Answer any <u>Iwo</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.					
Q. No.	Questions	Marks	BLs	COs	POs
	I: PART - A	10			
I a.	State Linearity property.	2	L1	CO1	PO1
b.	List the similarities between DIT and DIF FFT algorithm.	2	L1	CO2	PO1
c.	What are the two types of digital filter?	2	L1	CO3	PO1
d.	What is rectangular window? Explain	2	L1	CO4	PO1
e.	List the application of DSP processors.	2	L1	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
1 a.	Find N-point DFT of the following sequences:				
	i) $x(n) = \cos(\frac{2\pi}{N}K_0n); \ 0 \le n \le N-1$	9	L3	CO1	PO2
	ii) $y(n) = \sin(\frac{2\pi}{N}K_0n); 0 \le n \le N-1$				
b.	State and Prove:				
	i) Circular time shift property	9	L3	CO1	PO2
	ii) Circular frequency property				
c.	Find circular convolution of two given sequence $x_1(n) = \{1, 2, 3, 1\}$ and				
	$x_2(n) = \{4, 3, 2, 2\}$ using time domain approach and using frequency	9	L3	CO1	PO2
	domain approach.				
	UNIT - II	18			
2 a.	Develop a DIF FFT algorithm to compute N-point DFT $x(K)$ of an	9	L3	CO2	DO2
	N-Point sequence $x(n)$.	9	L3	CO2	PO3
b.	Given $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$, find $x(K)$ using DIT FFT algorithm.	9	L3	CO2	PO3
c.	Obtain 8-poing DFT of the following sequence using radix-2 DIF FFT				
	algorithm. Show all the result along the signal flow graph, given	9	L3	CO2	PO3
	$x(n) = \{2, 1, 2, 1\}$				

UNIT - III

3 a. Obtain parallel realization for the system described by,

$$H(z) = \frac{\left(1 + z^{-1}\right)\left(1 + 2z^{-1}\right)}{\left(1 + \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)\left(1 + \frac{1}{8}Z^{-1}\right)}$$

9 L3 CO3 PO3

18

b. An LTI digital IIR filter is specified by the following TF,

$$H(z) = \frac{(z-1)(z-2)(z+1)z}{\left[z-\left(\frac{1}{2}+j\frac{1}{2}\right)\right]\left[z-\left(\frac{1}{2}-\frac{1}{2}j\right)\right]\left[z-\frac{1}{4}j\right]\left[z+\frac{1}{4}j\right]}$$

9 L3 CO3 PO3

Realize the system using the following forms:

- i) Direct form I
- ii) Direct form II
- c. Obtain the Direct and Cascade form realization of following FIR filter

$$\mathrm{H}(z) = (1 - \frac{1}{4}z^{-1} + \frac{3}{8}z^{-2}) \left(1 - \frac{1}{8}z^{-1} - \frac{1}{2}z^{-2}\right)$$

9 L3 CO3 PO3

JNIT - IV

18

- 4 a. A Butterworth low pass filter has to meet the following specification:
 - i) Pass band gain $k_p = -1$ dB, at $\Omega_p = 4$ rad/sec
 - ii) Stop band attenuation $K_s \ge 20$ dB at $\Omega_s = 8$ rad/sec

9 L3 CO4 PO3

Determine the transfer function of the lowest order Butterworth filter to meet the above specification.

b. The analog filter $H_a(s) = \frac{s+1}{s^2+5s+6}$, find H(z) using impulse invariance transformation take T = 0.1 sec.

9 L3 CO4 PO3

c. Design the symmetric FIR low pass filter whose desired frequency response is given as,

 $H_d(\omega) = \begin{cases} e^{-j\omega\tau} \text{ for } |\omega| \leq \omega_c \text{ otherwise The length of the filter should be 7.} \end{cases}$

9 L3 CO4 PO3

and $\omega_c = 1$ radians/sample. Use rectangular window.

UNIT - V

18

5 a. Explain the architecture of TMS320C5X processor.

9 L2 CO5 PO1

- b. With a neat block diagram, explain the following:
 - i) Servo control using TMS320 processor

9 L2 CO5 PO1

- ii) Video signal processing using TMS320Cxx processor
- c. List the features of TMS 320 C5x processors.

9 L2 CO5 PO1