U.S.N	
-------	--

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi) Eight Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; July/August - 2022 Renewable Energy Sources

	Kenewable Energy	ources			
Tin	ne: 3 hrs		Max. N	larks:	100
	Course Outcome	\$			
The	Students will be able to:				
СО.	1: Need for knowing importance of the electrical energy th and supply of electrical energy.	e various factors conti	ributing fo	or the d	emand
CO	 Conversion principles, potential of the solar energy, var energy. 	ious types of solar ene	ergy work	ing with	ı solar
СО.	3: Scenario of the wind energy. Wind energy conversion sy applications.	stems different types o	of assembl	ies,	
CO	4: Photosynthesis process, biomass conversion technologie systems.	es. Solid waste convers	sion and n	nanagei	ment
CO.	5: Basic energy conversion principle of tidal and ocean en ocean thermal energy conversion systems and application		f tidal pov	ver pla	nt,
Not	e: I)PART - A is compulsory. Two marks for each question	n.			
	II)PART - B : Answer any <u>Two</u> sub questions (from a, b,		marks fr	om eaci	h unit.
).	Questions		Marks	BLs	COs
	I:PART - A		10	210	000
a. D	Define Zenith angle.		2	L1	CO1
. г	valies the engliestions of color themes I existent		2	Т 1	cor

	I : PART - A	10			
I a.	Define Zenith angle.	2	L1	CO1	PO2
b.	Enlist the applications of solar thermal system.	2	L1	CO2	PO2
c.	Enlist the limitations of WECS.	2	L1	CO3	PO2
d.	Describe biomass gasification.	2	L1	CO4	PO2
e.	Enlist the advantages of tidal power generation.	2	L1	CO5	PO2
	II : PART – B	90			
	UNIT – I	18			
1 a.	UNIT – I Discuss any 3 conventional types of energy sources.	18 9	L2	CO1	PO2
1 a. b.		-	L2 L2	CO1 CO1	PO2 PO2
	Discuss any 3 conventional types of energy sources. Explain the advantages and limitations of non-conventional energy sources. Determine the local solar time and declination at a local latitude 23 ⁰ 15'	9 9	L2	CO1	PO2
b.	Discuss any 3 conventional types of energy sources. Explain the advantages and limitations of non-conventional energy sources.	9		CO1	_

P18EE81		Ра	age No	<i>2</i>	
UNIT - II		18			
2 a.	What is a green house? Explain different types of green houses.	9	L2	CO2	PO2
b.	Describe the working principle of a solar photo-voltaic cell. Explain the				
	working of a solar photo-voltaic power generation system with a neat	9	L2	CO2	PO2
	diagram.				
c.	With a neat sketch, explain solar water pumping system.	9	L2	CO2	PO2
	UNIT - III	18			
3 a.	Derive an expression for the maximum power in the wind.	9	L3	CO3	PO1,2
b.	Wind at 1 standard atmospheric pressure and 15^0 C has velocity of				
	15m/sec. Calculate:				
	i) The total power density in the wind stream.				
	ii) The maximum obtainability power density.	9	L3	CO3	PO1,2
	iii) The total power.				
	iv) The torque and axial thrust. Given turbine diameter = 120 m, turbine				
	operating speed = 40 rpm at maximum efficiency, propeller type WT.				
c.	Explain the factors used for wind site selection considerations.	9	L3	CO3	PO2
	UNIT - IV	18			
4 a.	Describe the following processes for biomass conversion:				
	i) Anaerobic digestion	9	L2	CO4	PO2
	ii) Fermentation)	L2	04	102
	iii) Pyrolysis				
b.	Enlist and explain the factors affecting biodigestion.	9	L2	CO4	PO2
c.	Explain KVIC and Janatha models of biogas plant unit diagram.	9	L4	CO4	PO2
	UNIT - V	18			
5 a.	Describe components of tidal power plants.	9	L2	CO5	PO2
b.	A tidal power plant of the simple single basic type has a basin area of				
	$30 \times 10^{6} \text{m}^{2}$. The tide has a range of 12 m. The turbine however, stops				
	operating when the head of it falls below 3 m. Calculate the energy	9	L3	CO5	PO1,2
	generated in the filling process in KWhr. If the turbine generator				
	efficiency is 0.73.				
c.	Explain the Anderson type OTEC cycle with diagram.	9	L2	CO5	PO2
	* * * *				