U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Sixth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; July / Aug. - 2022 Programmable Logic Controller and SCADA

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Understanding the basics of programmable logic controllers its hardware and architecture.
- CO2: Analyzing signal processing and applications of PLC.
- CO3: Describing PLC programming techniques.
- CO4: Analyzing Timers, counters and shift registers programming.
- CO5: Understanding Data handling and SCADA Systems.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I: PART - A	10			
I a.	How much is 1 GB of memory?	2	L1	CO1	PO1
b.	Enlist i/o devices used in PLC.	2	L1	CO2	PO1
c.	A signal lamp is required to be switched ON if a pump is running and				
	the pressure is satisfactory or if pump test switch is closed. Draw the	2	L1	CO3	PO1
	ladder diagram.				
d.	Enlist various types of timers.	2	L1	CO4	PO1
e.	Enlist any four application of SCADA.	2	L1	CO5	PO1
	II : PART - B				
	UNIT - I	18			
1 a.	Describe PLC. Explain the need of PLC in automation by enlisting	9	1.2	CO1	PO1
	advantages of it.		22	COI	101
b.	Explain internal architecture of PLC with a neat block diagram.	9	L2	CO2	PO2
c.	Describe the IEC standard for complete life cycle of PLC	9	L2	CO1	PO2
	UNIT - II	18			
2 a.	With diagram explain ISO/OSI network model.	9	L2	CO2	PO2
b.	Explain the serial standards for effective communication by describing	9	L3	CO2	PO1
	serial communication.	,	113	202	101
c.	Explain the application of PLC in liquid level monitoring and	9	L1	CO2	PO1
	conveyor belt system.	,		232	

P18EE644			Page No 2		
UNIT - III					
3 a.	Realize NAND, NOR and XOR logic gates using ladder diagram and	9	L3	CO3	PO2
	functional block diagram.	,	LJ	CO3	102
b.	Explain the conventions adopted in drawing ladder diagram.	9	L4	CO3	PO2
c.	Draw the ladder diagram and explain the following relays:				
	i) Battery backed	9	L3	CO3	PO3
	ii) SET and RESET				
	UNIT - IV	18			
4 a.	Explain various types of timers with ladder diagram.	9	L2	CO4	PO3
b.	Describe sequencer. Explain how sequencer logic is implements in	9	12	CO2	DO2
	ladder diagram.	9	L	CO2	102
c.	Explain up-down counting with ladder diagram.	9	L2	CO2	PO2
	UNIT - V	18			
5 a.	Discuss the following:				
	i) Need of SCADA in automation	9	L4	CO5	PO2
	ii) MTU and RTU				
b.	Explain the role of SCADA in automation of industries.	9	L2	CO5	PO1
c.	With block diagram explain SCADA architecture.	9	L2	CO5	PO1

* * * *