U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Sixth Semester, B.E. - Electrical and Electronics Engineering
Semester End Examination; July / Aug. - 2022
Power Plant Engineering

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Understand the conceptual working principles of conventional source of electric power generation.
- CO2: Explain the detail descriptions of hydroelectric plants, nuclear power plants and gas power plants.
- CO3: Analyze the power generation using non-Conventional Energy Sources.
- CO4: Understand the concept of load curves and different tariff.
- CO5: Understand the concept of grounding and power factor improvement.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I: PART - A	10			
I a.	Mention the criteria for selection of site for a thermal station.	2	L2	CO1	PO2
b.	Mention the choice and characteristics of diesel engine.	2	L1	CO2	PO2
c.	Define distributed generation.	2	L1	CO3	PO2
d.	Define diversity factor and load factor.	2	L1	CO4	PO2
e.	Mention the four different types of grounding.	2	L1	CO5	PO2
	II : PART - B	90			
	UNIT - I	18			
1 a.	Explain schematic layout of coal-fired power station.	9	L2	CO1	PO2
b.	What are the factors for selection of site for hydroelectric stations?	9	L2	CO1	PO2
c.	What are the functions of economizer and super heater in thermal	9	L2	CO1	PO2
	power plant?	10			
2 -	UNIT - II	18	1.0	CO2	DO2
2 a.	Explain main parts of a nuclear reactor and state their functions.	9	L2	CO2	
b.	Briefly explain main components of a diesel electric plant.	9	L2	CO2	
c.	Explain heavy water cooled and moderated (CANDU TYPE) reactor.	9	L2	CO2	PO2
	UNIT - III	18			
3 a.	With a neat sketch of solar-water heating arrangement, briefly explain	9	L3	CO3	PO2
	the working of solar power plant.		L3	CO3	102
b.	Explain wind energy power plant.	9	L2	CO3	PO2
c.	Write a brief note on harnessing the tidal energy with a neat diagram.	9	L2	CO3	PO2

Page No... 2 P18EEO651 **UNIT - IV** 18 4 a. A base load station having a capacity of 400 MW and a standby station having a capacity of 50 MW share a common load. Find the annual load factor and capacity factor of two power stations from following data. Annual standby stations output = $87.35 \times 10^6 \text{ kWh}$ L2 CO4 PO2 Annual base load station output = $101.0 \times 10^6 \text{ kWh}$ Peak load on standby station = 120 MW Hours of use by standby station / year = 3000 hrsb. A generating station supplied the following loads; 150 MW, 120 MW, 85 MW, 60 MW and 5 MW. The station has a maximum demand of 220 MW. The annual load factor of the station is 48%. Calculate; 9 L3 CO4 PO2 i) The number of units supplied annually ii) The diversity factor iii) The demand factor c. Explain different types of tariffs. 9 L2 CO4 PO2 UNIT - V 18 9 5 a. Explain resistance and reactance grounding. L2 CO5 PO2 b. Explain voltage transform earthing along with phasor diagram. 9 CO₅ PO₂ c. Define resonant grounding with a neat phasor diagram explain 3-phase

isolated neutral system.

9

L2 CO5 PO2