
P18IP46		Pe	аge I	Vo 1							
Contrast of											
	P.E.S. College of Engineering, Mandya - 571	401									
(An Autonomous Institution affiliated to VTU, Belagavi)											
Fourth Semester, B. E Industrial and Production Engineering Semester End Examination; July / Aug 2022											
Theory of Machines											
Time: 3		Max.	Mark	s: 100							
	Course Outcomes										
	ents will be able to: 'alculate mobility (number of degrees-of-freedom) and enumerate rigid links and	l types of	joints	within							
mechanisms, and to Understand gear mechanism classification and to become familiar with gear											
	tandardization and specification in design. xplain Terminology of gears and Importance of gear trains and their practical appl	lications.									
	now uses and advantages of belt drives Types and their nomenclature, Relationshi ommonly used design parameters.	o between	belt t	ensions							
CO4 - D	raw inversions and determine velocity and acceleration of different mechanisms, a	and to Cal	culate	loss of							
-	ower due to friction in various machine elements and Importance of Governors. plain Gyroscopic Effects and Gyroscope in automobile sector.										
<u>Note</u> : I)	PART - A is compulsory. Two marks for each question.										
<i>II) I</i>	PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 mark	s from eac	ch unii	t.							
Q. No.	Questions	Marks	BLs	COs							
	PART -A	10									
I a.	Define Kutzback criterion.	2	L1	CO1							
b.	List the methods to avoid interface for a pair of spur gears in contact.	2	L1	CO2							
c.	Define the maximum power transmission condition in a belt drive.	2	L1	CO3							
d.	Explain sensitiveness in a governor.	2	L1	CO4							
e.	Explain the Gyroscopic effect while the aeroplane takes a;										
	i) Left turn										
	ii) Right turn	2	L1	CO5							
	Assume the propeller to be rotating in the clockwise direction when										
	viewed from the front end of the aeroplane.										
	PART - B	90									
	UNIT - I	18									
1 a.	Derive the condition for the Ackerman steering gear mechanism.	9	L3	CO1							
b.	With a neat sketch explain any one inversion of four bar chain.	9	L1	CO1							
c.	Determine the mobility of the members shown in fig. $1(c)i$, $1(c)ii$ and	9	13	CO1							
	1(c)iii and state that whether it is a mechanism or not.	ソ	LJ	CUI							

18

P18IP46

UNIT - IV

4 a. The rotor has the following properties:

	$m_1=3kg$	$r_1 = 30mm$	$\phi_l = 30^o$	<i>l</i> ₁ =100mm					
	$m_2=4kg$	$r_2=20mm$	$\phi_2 = 120^o$	<i>l</i> ₂ =300mm					
	$m_3=2kg$	$r_3=25mm$	$\phi_3 = 270^o$	<i>l</i> ₃ =600mm	14	1.2	004		
	$r_{c_1} = 35mm \ a_1$	$r_{c_1} = 35mm \ and \ r_{c_2} = 20mm$					CO4		
	l_1 , l_2 and l_3								
	between the bearings is 500 mm. Determine the counter mass to be placed								
	in places of m_1 and mid way between m_2 and m_3 for complete balance.								
b.	Derive an expression for the governor speed for a porter governor.					L3	CO4		
c.	Define controlling force for a porter and Hashthell governor.					L1	CO4		
	UNIT - V								
			UNIT - V		18				
5 a.	Explain the g	yroscopic effec	UNIT - V ets on an aeropl	ane.	18 9	L1	CO5		
5 a. b.							CO5 CO5		
	Explain the g	yroscopic effec	ets on an aeropl ets on a Naval s		9				
b.	Explain the g	yroscopic effec a marine turbin	ets on an aeropl ets on a Naval s ne has a mome	hip.	9				
b.	Explain the g The rotor of rotates at 300	yroscopic effec a marine turbin 0 rpm. Clockw	ets on an aeropl ets on a Naval s ne has a mome vise when view	hip. ent of inertia of 750 kg/m ² and	9				
b.	Explain the g The rotor of rotates at 300 with angular	yroscopic effec a marine turbin 0 rpm. Clockw r simple harr	ets on an aeropl ets on a Naval s ne has a mome vise when view	hip. ent of inertia of 750 kg/m ² and ed from left. If the ship pitches having a periodic time of	9	L1			
b.	Explain the g The rotor of rotates at 300 with angular 16 seconds ar	yroscopic effec a marine turbin 0 rpm. Clockw r simple harr nd an amplitude	ets on an aeropl ets on a Naval s ne has a mome vise when view nonic motion	hip. ent of inertia of 750 kg/m ² and ed from left. If the ship pitches having a periodic time of d the	9 9	L1	CO5		
b.	Explain the g The rotor of rotates at 300 with angular 16 seconds ar i) Maximum	yroscopic effec a marine turbin 0 rpm. Clockw r simple harr nd an amplitude angular velocit	ets on an aeropl ets on a Naval s ne has a mome vise when view nonic motion e of 0.1 rad, fine	hip. ent of inertia of 750 kg/m ² and ed from left. If the ship pitches having a periodic time of d the axis	9 9	L1	CO5		

* * * *