U.S.N

L3 CO2 PO1

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Sixth Semester, B.E. - Industrial and Production Engineering Semester End Examination; July / Aug. - 2022 Quality Assurance and Reliability

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

CO1: Understanding the fundamentals of quality function and concept of quality assurance.

CO2: Demonstrate the concept of statistical process control and control charts for variables.

CO3: Analyze the controls chart for fraction non-confirming (defective) development and operation of control chart.

CO4: Analyze the various sampling inspection.

CO5: Estimate the reliability and life testing.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs
I a.	Define quality.	2	L1	CO1	PO1
b.	What is control chart?	2	L1	CO3	PO1
c.	Describe process capability.	2	L1	CO2	PO1
d.	What is DSP?	2	L1	CO4	PO1
e.	What is redundancy?	2	L1	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
1 a.	What are the right dimensions of the quantity? Explain.	9	L2	CO1	PO1
b.	Explain briefly Appraisal costs and prevention cost with examples.	9	L2	CO1	PO1
c.	Briefly explain planning and performing audit activities.	9	L3	CO1	PO1
	UNIT - II	18			
2 a.	Explain chance and assignable causes with examples.	9	L2	CO2	PO1
b.	With a neat sketch explain Basic principles of control chart.	9	L2	CO2	PO1
c.	The following are \bar{X} and R values for 20 subgroups and 5 readings.				

The specifications for this product are 37±10,

Sub Groups	\overline{X}	R	Sub Groups	\overline{X}	R	
1	34.0	4	11	35.8	4	
2	31.6	4	12	38.4	4	
3	30.8	2	13	34.0	14	
4	33.0	3	14	35.0	4	9
5	35.0	5	15	33.8	7	
6	32.2	2	16	31.6	5	
7	33.0	5	17	33.0	5	
8	32.6	13	18	28.2	3	
9	33.8	19	19	31.8	9	
10	37.8	6	20	35.6	6	

Th. 1 . 111 1. 1 1 . 17 In I .

UNIT - III

111 - 111

3 a. Explain control chart for variables and attributes.

6 L2 CO3 PO1

18

b. The following data refer to the production and number of defectives for 15 consecutive days. Each day 400 units were inspected.

Days	No. of defectives	Days	No. of defectives
1	2	9	18
2	5	10	8
3	0	11	6
4	14	12	0
5	3	13	3
6	0	14	0
7	1	15	6
8	0		

12 L3 CO3 PO1

Plot 100p(np) chart and what control limits do you adopt for future production.

c. Prepare a "C" chart based on the evidence of the cloth length given below.

100 m cloth	No. of Minor	100 m cloth	No. of Minor
length No.	defects	length No.	defects
1	2	6	0
2	3	7	2
3	1	8	1
4	4	9	4
5	4	10	2

12 L3 CO3 PO1

Is it process under control?

UNIT - IV

18

4 a. Explain DSP with a neat flow diagram.

6 L2 CO4 PO1

b. Write a note on;

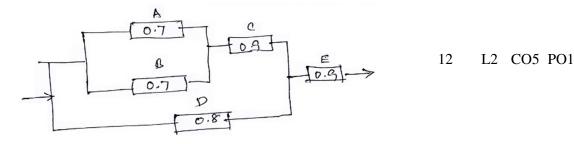
12 L2 CO4 PO1

- i) LTPD ii) AOQ
- c. A DSP is as follows N = 5000, $n_1 = 100$, $n_2 = 100$, $C_1 = 0$, $C_2 = 1$ and

iii) ATI

P = 0.01. Calculate P_a , ATI and AOQ.

12 L2 CO4 PO1


UNIT - V

18

- 5 a. Explain the following:
 - i) Reliability ii) Failure rate
- iii) MTBF

6 L2 CO5 PO1

b. Calculate the reliability of the system shown below,

c. Describe the various techniques of increasing reliability.

12 L2 CO5 PO1