U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Information Science and Engineering Semester End Examination; July / August - 2022 Design and Analysis of Algorithms

Time: 3 hrs Max. Marks: 100

Course Outcome

The Students will be able to:

- CO1: Use asymptotic notations to analyze the performance of algorithms.
- CO2: Analyze the design of algorithms using Brute force, Decrease & Conquer.
- CO3: Analyze the design of algorithms using Divide & Conquer, Transform & Conquer.
- CO4: Analyze the design of algorithms using Space and Time Tradeoffs, Dynamic Programming.
- CO5: Analyze the design of algorithms using Greedy technique, Backtracking, Branch & Bound techniques.

Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks.

ii) PART-B Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

Q. No.	Questions	Marks	BLs	COs
	I : PART - A	10		
I a.	Define two kinds of algorithm efficiency.	2	L1	CO1
b.	Highlight any two differences between depth first search and breadth first search.	2	L1	CO2
c.	List three major variations of Transform-and conquer.	2	L1	CO3
d.	Define; i) Hashing and ii) Collision in hashing.	2	L1	CO4
e.	State n-queen's problem.	2	L1	CO5
	II : PART - B	90		
	UNIT - I	18		
1 a.	Explain the various stages of algorithm design and analysis process with a diagram.	9	L2	CO1
b.	i) Define $\theta(\text{big-theta})$ asymptotic natation. Prove that $1/2 \ n(\text{n-1}) \in \theta(\text{n}^2)$.	5	L3	CO1
	ii) Write an algorithm to find largest element in a given array. Analyze its time efficiency.	4	L4	CO1
c.	i) Explain two ways of representing graphs.	5	L2	CO1
	ii) Write an algorithm to determine whether all elements in a given array are	4	L4	CO1
	distinct. Analyse its time efficiency.	4	L/ 1	COI
	UNIT - II	18		
2 a.	i) Using bubble sort algorithm, arrange the letters of the word 'QUESTION' in alphabetical order.	6	L3	CO2
	ii) Define topological sorting problem with an example.	3	L1	CO2
b.	Write an algorithm to implement insertion sort. Analyze its best, worst and average case efficiency.	9	L1	CO2

b. i) Using quick sort, arrange the letters of the word 'QUICKSORT' in 6 L3 alphabetical order.

ii) Define AVL tree. Give an example for: 3 L1 CO₃ I) AVL tree II) Binary search tree that is not an AVL tree

c. i) Apply binary search for the following array:

	3	14	27	31	39	42	55	70	74	81	85	93	98	6	L3	CO3
Elemen	ts to	be s	earc	hed =	= 11											

ii) Define heap tree with an example 3 L1 CO3

> **UNIT - IV** 18

4 a. Write Horspool's algorithm. Apply Horspool algorithm to search for the 9 pattern BAOBAB in the text. L3 CO4 BESS_KNEW_ABOUT_BAOBABA

b. Write warshall's algorithm. Apply the same to find the transitive closure of the following graph:

c. Solve the following knapsack problem with given capacity w = 5 using dynamic programming:

	Item	Weight	Value
	1	2	\$12
Ī	2	1	\$10
Ī	3	3	\$20
Ī	4	2	\$15

UNIT - V

9 L3 CO4

L3 CO4

L4 CO2

CO3

L2

18

5 a. Write kruskal's algorithm to find the minimum cost spanning tree. Trace the algorithm for the following graph:

L3 CO5

b. i) Construct a Huffman tree for the following data:

CharacterABCDEProbability0.40.10.20.150.15

ii) Define P and NP problem. 3 L1 CO5

6

L3 CO5

c. i) Compare branch and bound algorithm with back tracking 4 L4 CO5

ii) Draw the state space tree for the sum of subset problem of the instance.

5 L3 CO5

 $S = \{5, 7, 8, 10\}$ and d = 15

* * * *