| U.S.N |  |  |  |  |  |
|-------|--|--|--|--|--|



## P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Sixth Semester, B.E. - Information Science and Engineering
Semester End Examination; July / Aug. - 2022
Machine Learning

Time: 3 hrs Max. Marks: 100

## Course Outcomes

The Students will be able to:

CO1: Understand types of Machine learning algorithms.

CO2: Implement various classification algorithms using Python and apply techniques for building a good data set.

CO3: Implement dimensionality reduction techniques using Python and perform model evaluation.

CO4: Implement Linear Regression, k-means and artificial neural network methods using Python.

CO5: Understand fundamentals of Deep learning and Tensor flow.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

|        | 11) TAKT - B. Answer any <u>Two</u> sub-questions (from a, b, c) for a maximum of 16 marks from each and. |    |             |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------|----|-------------|--|--|--|--|
| Q. No. | Questions                                                                                                 |    | BLs COs POs |  |  |  |  |
|        | I: PART - A                                                                                               | 10 | I 1 GO1 PO1 |  |  |  |  |
| I a.   | Define Supervised Learning with examples.                                                                 | 2  | L1 CO1 PO1  |  |  |  |  |
| b.     | Explain, Why KNN is called as lazy algorithm?                                                             | 2  | L2 CO2 PO1  |  |  |  |  |
| c.     | List the first four steps of extracting PCA.                                                              | 2  | L1 CO3 PO1  |  |  |  |  |
| d.     | Define Soft Clustering.                                                                                   | 2  | L1 CO4 PO1  |  |  |  |  |
| e.     | Define the mathematical notation for Discrete Convolution.                                                | 2  | L1 CO5 PO1  |  |  |  |  |
|        | II : PART - B                                                                                             | 90 |             |  |  |  |  |
|        | UNIT - I                                                                                                  | 18 |             |  |  |  |  |
| 1 a.   | Explain the different types of machine learning techniques.                                               | 9  | L2 CO1 PO1  |  |  |  |  |
| b.     | Implement SVM algorithm using Skleran for Iris dataset and visualize                                      | 9  | L3 CO1 PO2  |  |  |  |  |
|        | the results.                                                                                              |    | L3 CO1102   |  |  |  |  |
| c.     | Explain the roadmap for building machine learning systems.                                                | 9  | L2 CO1 PO1  |  |  |  |  |
|        | UNIT - II                                                                                                 | 18 |             |  |  |  |  |
| 2 a.   | Explain the three impurity measures of Decision tree learning.                                            | 9  | L2 CO2 PO1  |  |  |  |  |
| b.     | Explain how to perform one hot encoding on nominal features?                                              | 9  | L3 CO2 PO2  |  |  |  |  |
| c.     | Write python code snippets for the following:                                                             |    |             |  |  |  |  |
|        | <ul><li>i) Eliminate samples with missing data</li><li>ii) Imputing missing values</li></ul>              |    | 1.2 CO2 DO1 |  |  |  |  |
|        |                                                                                                           |    | L2 CO2 PO1  |  |  |  |  |
|        | iii) Creating an example dataset                                                                          |    |             |  |  |  |  |
|        | UNIT - III                                                                                                | 18 |             |  |  |  |  |
| 3 a.   | Implement PCA for Wine dataset using Sklearn.                                                             | 9  | L2 CO3 PO2  |  |  |  |  |
| b.     | Explain K-fold cross validation for performance evaluation.                                               | 9  | L2 CO3 PO1  |  |  |  |  |
| c.     | Explain with python code snippets how logistic regression model get                                       | _  | 10 000 000  |  |  |  |  |
|        | trained for document classification.                                                                      | 9  | L2 CO3 PO2  |  |  |  |  |

| P18IS61 |                                                                                              |   | Page No 2  |  |  |  |
|---------|----------------------------------------------------------------------------------------------|---|------------|--|--|--|
|         | 18                                                                                           |   |            |  |  |  |
| 4 a.    | Explain Elbow method to find optimum number of clusters. Write its implementation in Python. | 9 | L3 CO4 PO2 |  |  |  |
| b.      | Explain Simple linear regression and Multiple linear regression.                             | 9 | L2 CO4 PO1 |  |  |  |
| c.      | Explain the process of forward propagation to calculate the output of an MLP model.          |   | L2 CO4 PO2 |  |  |  |
|         | UNIT - V                                                                                     |   |            |  |  |  |
| 5 a.    | Explain the following concepts:                                                              |   |            |  |  |  |
|         | i) Tensor flow ranks and tensors                                                             | 9 | L2 CO5 PO1 |  |  |  |
|         | ii) Placeholders in tensor flow                                                              |   |            |  |  |  |
| b.      | Explain sub sampling in CNN.                                                                 | 9 | L2 CO5 PO1 |  |  |  |
| c.      | Explain the following:                                                                       |   |            |  |  |  |
|         | i) The effect of zero padding in a convolution                                               | 9 | L2 CO5 PO1 |  |  |  |
|         | ii) Performing a discrete convolution in one dimension                                       |   | L2 CO3 PO1 |  |  |  |
|         | iii) Size of convolution output                                                              |   |            |  |  |  |
| * * * * |                                                                                              |   |            |  |  |  |