U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Eight Semester, B.E. - Mechanical Engineering
Semester End Examination; July / August - 2022
Industrial Robotics

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Classify the robots based on geometrical configuration. Define work volume, resolution and accuracy of various configuration of robot.
- CO2: Identify different types of drive system and sensor required for specific applications.
- CO3: Explain the forward Kinematics of robots using DH method.
- CO4: Develop robot task program using robot language.
- CO5: Distinguish the requirements of robot systems for various industrial applications.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of 18 marks from each unit.

11) FART - B: Answer any <u>Iwo</u> sub questions (from a, v, c) for maximum of 18 marks from each unit.							
Q. No.	Questions	Marks	BLs	COs	POs		
	I : PART - A	10					
I a.	Define accuracy and repeatability.	2	L1	CO1	PO1		
b.	What are internal state sensors?	2	L1	CO2	PO1		
c.	What do you mean by direct kinematics problem in robotics?	2	L1	CO3	PO1		
d.	What is the function of REACT statement in VAL?	2	L1	CO4	PO1		
e.	Write any two robot features generally contributed to the success of the			CO5	DO1		
	mission to load/unload application.	2	L1	CO3	roi		
	II : PART - B	90					
	UNIT - I	18					
1 a.	Define industrial robots. According to RIA. With a neat sketch, explain three	9	L2	CO1	PO1		
de	degree of freedom associated with the robot wrist.				101		
b.	Sketch and explain polar and jointed arm configuration of a robot with their	9	L2	CO1	PO1		
	merits.			001	101		
c.	A robot with rotating base is located at a point O and have to transfer an						
	object from a point X to Y where $OX = OY = XY = 1$ m. The base driver is a						
	DC motor which rotates at 540 RPM and connected to the base of the shaft	9	L2	CO1	P ∩1		
	through a reduced gear 3:1. An incremental encoder which emits 500 pulses		LZ	COI	101		
	per second is attached to the motor shaft. Find the resolution and travelling						
	time to move X to Y.						
	UNIT - II	18					
2 a.	Write neat sketch, explain the working of incremental and absolute encoders.	9	L2	CO2	PO1		
b.	What are range sensors? With a neat sketch explain the working principle of	9	L2	CO2	DO1		
	proximity sensors.	9	L2	CO2	PUI		
c.	Discuss about the different types of robot drive systems.	9	L2	CO2	PO1		

P18ME81			Page No 2			
	UNIT - III					
3 a.	Obtain 2D homogeneous displacement Matrix for an industrial manipulator having two planar links.			CO3	2	
b.	Describe the geometry based direct Kinematic analysis of 2 degrees of freedom articulated planar mechanism.			CO3	2	
c.	With neat sketch explain the steps involved in the implementation of DH convection.			CO3	PO1	
	UNIT - IV	18				
4 a.	Explain three basic modes of operation in a robot language operating system.	9	L2	CO4	PO1	
b.	Write a robot program for pick and place operation for the press work as					
	indicated in					
	Total 1,8 Process pan b	9	L2	CO4	PO1	
	Fig.Q (4b).					
c.	Explain two ways of accomplishing lead through programming.	9	L2	CO4	PO1	
	UNIT - V	18				
5 a.	With an example, illustrate the application of robot in palletizing and related operations.	9	L2	CO5	PO1	
b.	Describe bipod Robot locomotion.	9	L2	CO5	PO1	
c.	Discuss about the general considerations in Robot material handling.	9	L2	CO5	PO1	