**P20MCA23** Page No... 1

U.S.N



## P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Second Semester, Master of Computer Applications (MCA)
Semester End Examination; October - 2022
Operating Systems

Time: 3 hrs Max. Marks: 100

## Course Outcomes

The Students will be able to:

CO1: Define operating system calls utilities services and structures.

CO2: Explain process concepts, communication and evaluate various CPU scheduling algorithm problems.

CO3: Understand process synchronization and identify methods for handling deadlocks.

CO4: Analyze and Explain different memory management techniques.

CO5:Explainhow files are organized, manipulated data on disk is organized scheduled &LINUX Operating system.

**Note:** I) Answer any **FIVE** full questions, selecting **ONE** full question from each unit.

II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory.

III) Each unit carries 20 marks.

| Q. No. | Questions                                                        | Marks | BLs | COs | POs      |
|--------|------------------------------------------------------------------|-------|-----|-----|----------|
|        | UNIT - I                                                         | 20    |     |     |          |
| 1 a.   | Summarize the activities connected with process management and   | 10    | L2  | CO1 | PO2,3,7  |
|        | memory management.                                               | 10    | 22  |     |          |
| b.     | Define system call. Mention the categories of system calls.      | 10    | L1  | CO1 | PO2,3,7  |
|        | OR                                                               |       |     |     |          |
| 1 d.   | Classify operating system services which are helpful to the user | 10    | L4  | CO1 | PO2,3,7  |
|        | and operation of the system.                                     |       |     |     |          |
| e.     | Demonstrate with figure, storage device hierarchy according to   | 10    | 1.2 | CO1 | PO2,3,7  |
|        | speed and cost.                                                  | 10    | L2  | COI | 1 02,3,7 |
|        | UNIT - II                                                        | 20    |     |     |          |
| 2 a.   | Explain inter process communication.                             | 10    | L2  | CO2 | PO2,3,9  |
| b.     | Compare different types of multithreading models. Write any four | 10    | Ι Δ | CO2 | PO2,3,9  |
|        | challenges in programming for multicore systems.                 | 10    | L r |     |          |
|        | OR                                                               |       |     |     |          |
| 2 d.   | Construct a Gantt chart for SJF and Round Robin with time        |       |     |     |          |
|        | Quantum $=15$ ms for the following set of process with CPU burst |       |     |     |          |
|        | time in milliseconds.                                            |       |     |     |          |

| Process        | Burst time |  |
|----------------|------------|--|
| $P_0$          | 80         |  |
| $P_1$          | 20         |  |
| $P_2$          | 45         |  |
| P <sub>3</sub> | 15         |  |
| P <sub>4</sub> | 30         |  |

10 L5 CO2 PO2,3,9

Calculate average waiting time and turnaround time for the same.

With figure Evoluin different states of a process

10 I/ CO2 PO230

**UNIT - III** 

20

- 3 a. What is semaphore? Discuss the three requirements for solution to critical section problem.
- 10 L6 CO3 PO1,2,3,8
- b. Using the following snapshot of a system answer the questions using bankers and safety algorithm.
  - i) What is the content of need matrix?
  - ii) Is the system in safe state?

| Process        | Allocation |   | Max |   |   | Available |   |   |   |
|----------------|------------|---|-----|---|---|-----------|---|---|---|
|                | A          | В | С   | A | В | С         | A | В | C |
| $P_0$          | 0          | 1 | 0   | 7 | 5 | 3         | 3 | 3 | 2 |
| $\mathbf{P}_1$ | 2          | 0 | 0   | 3 | 2 | 2         |   |   |   |
| $P_2$          | 3          | 0 | 2   | 9 | 0 | 2         |   |   |   |
| $P_3$          | 2          | 1 | 1   | 2 | 2 | 2         |   |   |   |
| $P_4$          | 0          | 0 | 2   | 4 | 3 | 3         |   |   |   |

10 L5 CO3 PO1,2,3,8

**UNIT-IV** 

20

4 a. With neat sketch, explain paging hardware.

10 L6 CO4 PO1,2,3

b. Consider the following page reference string,

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

Assume there are three frames initially empty. How many page fault occurs in the case;

10 L5 CO4 PO1,2,3

- i) FIFO
- ii) Optimal
- iii) LRU algorithms

UNIT - V

20

5 a. Discuss two level and tree-structured directories.

- 10 L4 CO5 PO1,2,5,7
- b. Explain different file attributes and various operations on a file.
- 10 L2 CO5 PO1,2,5,7

OR

5 d. Discuss components of Linux system with figure.

- 10 L6 CO5 PO1,2,5,7
- e. Explain contiguous allocation and linked allocation methods.
- 10 L1 CO5 PO1,2,5,7