P20MCA24 Page No... 1

U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Second Semester, Master of Computer Applications (MCA)
Semester End Examination; October - 2022
Database Management Systems

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Demonstrate the basic concepts of DBMS with data model.
- CO2: Construct an ER diagram for a given problem description.
- CO3: Identify appropriate primary key and foreign key in an ER model, specify structural constraints on each relationship.
- CO4: Formulate data retrieval queries in SQL based on assumptions and requirements.
- CO5: Design and Develop a database application using the relation schema with the help of normalization and explain transaction processing, concurrency control and crash recovery.

Note: I) Answer any FIVE full questions, selecting ONE full question from each unit.

- II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory.
- III) Each unit carries 20 marks.

Q. No.	Questions	Marks	RI c	CO_{c}	POs
Q. 110.			DLS	COS	1 03
	UNIT - I	20			
1 a.	Define DBMS. Discuss the characteristics of Database approach.	10	L2	CO1	PO2,3,4
b.	Discuss different categories and end users of database.	6	L2	CO1	PO2,3
c.	Differentiate between physical and logical data independence.	4	L2	CO1	PO1,2,3
	UNIT - II	20			
2 a.	Define the following terms with an example with respect to				
	ER-model:				
	i) Entity set				
	ii) Cardinality ratio	10	L1	CO2	PO1,2
	iii) Weak entity set				
	iv) Recursive Relationship				
	v) Participation				
b.	Define degree of relationship. Describe different types of	6	1.2	CO2	PO2,3
	relationship with example.	0	L2	CO2	PO2,3
c.	State any four differences between Strong entity and Weak entity	4	1.2	CO2	PO2,3
	with an example.	4	L2	CO2	PO2,3
	UNIT - III	20			
3 a.	Highlight the steps carried out in mapping ER-model to relational	10	1.0	CO2	DO2 2
	schema.	10	L2	CO3	PO2,3
b.	Explain Left and Right Outer Join with examples.	6	L2	CO3	PO2,3
c.	Illustrate Entity integrity constraint and Referential Integrity	4	1.0	CO2	DO2 2
	(formion from constraint) with an arounds	4	L2	CO3	PO2,3

P20MCA24 Page No... 2

OR

3 d.	Discuss the type of constraint violation that can occur during insert operation, delete operation and update operation.	10	L2 CO3	PO2,3
e.	Explain the following relational Algebraic operations with			
	an example: i) SELECT	10	12 602	DO2 2
	ii) PROJECT	10	L2 CO3	PO2,3
	iii) Cartesian product			
	UNIT - IV	20		
4 a.	Explain all options of SELECT statements in SQL, give example	10	12 004	DO1 2 2
	for each.	10	L2 CO4	PO1,2,3
b.	Explain DDL statements in SQL with example.	10	L3 CO4	PO1,2,3
	OR			
4 d.	Discuss aggregate functions in SQL with an example.	10	L6 CO4	PO1,2,3
e.	Consider the Airline-flight information schema. Write the			
	following Queries in SQL,			
	Flights(no: integer, from: string, to: string, distance: integer,			
	Departs: time, arriver: time, price: real)			
	Aircraft(aid: Integer, aname: string ,cruising range: integer)			
	Certified(eid: integer, aid: integer)	10		DO1 2 2
	Employees (eid: integer, ename: string; salary: integer)		I 1 CO4	
	i) Find the names of aircraft such that all pilots certified to operate	10	LI CO4	PO1,2,3
	them have salaries more than Rs. 80,000/-			
	ii) For each pilot who is certified for more than 3 aircrafts, find the			
	eid and maximum cruising range of the aircraft for which he/she			
	is certified			
	iii) Find the names of all pilots whose salary is less than price of			
	the cheapest route from Bangalore to Frankfurt			
	UNIT - V	20		
5 a.	Define Normalization. Explain 1NF, 2NF, 3NF and BCNF with	10	L1,2 CO5	DO1 2 3
	example.	10	L1,2 CO3	101,2,3
b.	Discuss ACID properties of Database transaction.	10	L6 CO5	PO2
	OR			
5 d.	Explain full and partial functional dependency with example.	10	L2 CO5	PO2
e.	Identify the rules to be applied for every transaction when			
	Binary Locking Scheme and Shared / Exclusive Locking Scheme is	10	L2 CO5	PO2
	followed.			