P20M0	CAD22			Page	e No 1			
	U.S.N							
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Second Semester, M. Tech - Civil Engineering (MCAD) Semester End Examination; October - 2022 Structural Stability Analysis - Classical and FE Approach <i>Max. Marks: 100</i>								
	Course Outcomes							
 The Students will be able to: CO1: Idealize the concepts of beam column structural behaviour, stability of column and compute Euler's critical load for different boundary conditions. CO2: Comprehend the energy method, bars on elastic foundations, successive approximation method for stability analysis. CO3: Comprehend finite element method n stability analysis to simple plane truss and 2D beams and frames. CO4: Grasp concept of lateral buckling of beams, tensional buckling of beams and buckling of rectangular plate type structures. Note: I) Answer any FIVE full questions, selecting ONE full question from each unit. II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory. III) Each unit carries 20 marks. Use of IS1893-2016 is permitted, missing data if any may be suitably assume. 								
Q. No.		Marks		-	POs			
	UNIT - I	20						
1 a.	Derive the equation of deflection for a pinned-pinned beam		L3	C01	PO1,3,2			
	column subjected to an Eccentric concentrated load 'Q' and an	20						
	axial load 'P' .Hence deduce the maximum deflection for the beam	20						
	column due to central concentrated load.							
	OR							
1 d.	Using the 4 th order differential equation obtain first two critical							
	loads for :	20	L3	CO1	PO1,3,2			
	i) Fixed-free column							
	ii) Fixed-fixed column							
	UNIT - II	20	L3	CO2	PO1,3,2			
2 a.	Determine the critical load for a cantilever column subjected to	20						
	uniformly distributed axial load.							
0.1	OR							
2 d.	Determine the critical load for a pinned-pinned column subject to	20	L3	CO2	PO1,3,2			
	an axial load by assuming a parabolic profile, to start with using the method of successive approximation.	20						
	the method of successive approximation.							

Contd... 2

P20MCAD22			Page No 2
UNIT - III	20		
3 a. Using the cubic Hermitian polynomial, derive the shape functions			
for two-noded Euler's-Bernoulli's beam element. Take two d.o.f	20	L3	CO3 PO1,3,5
per node (one translation and one rotation). Also determine $[Ke]_{ij}$	20		05 101,5,5
and $[Kg]_{ij}$ for $i = 2$ and $j = 2, 3, 4$.			
OR			
3 d. Determine the critical load for a fixed column discretising into two			
elements. Compare the answer with the closed form solution. Take	20	L3	CO3 PO1,3,5
total column length = 2 m and EI = 2 N-m^2 .			
UNIT - IV	20		
4 a. Determine the critical moment for the simply supported I-beam	20	L3	CO4 PO3,4,5
subjected to pure bending against lateral buckling.	20	LJ	04 105,4,5
UNIT - V	20		
5 a. Derive the expression for the critical load for simply-supported	20	L3	CO4 PO3,4,5
rectangular plate subjected to in-plane load N_x in one direction.	20	Ц)	007 100,7,0

* * * *