U.S.N



## P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

## Second Semester, M. Tech - Civil Engineering (MCAD) Semester End Examination; October - 2022

**Composite and Smart Materials** 

Time: 3 hrs Max. Marks: 100

## Course Outcomes

The Students will be able to:

- CO1: Carry out classification and application of various types of fibres.
- CO2: Explain thermo-mechanical properties of materials.
- *CO3:* Analyse environmental effects and failure theories of composite materials.
- CO4: Familiarise with smart materials and structures.

Note: I) Answer any FIVE full questions, selecting ONE full question from each unit.

- II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory.
- III) Each unit carries 20 marks.

| Q. No. | Questions                                                                                           | Marks | BLs | COs     | POs       |
|--------|-----------------------------------------------------------------------------------------------------|-------|-----|---------|-----------|
|        | UNIT - I                                                                                            | 20    |     |         |           |
| 1 a.   | Define composite material. Explain the classifications of composite materials.                      | 10    | L1  | CO1,2   | PO1,2,3,4 |
| b.     | Define weight fraction and volume fraction. Derive relationship between weight and volume fraction. | 10    | L2  | CO1,2   | PO1,2,3,4 |
|        | OR                                                                                                  |       |     |         |           |
| 1 d.   | Calculate the fraction of load carried by the fibers into composites of                             |       |     |         |           |
|        | glass fibers and epoxy matrix. One of them containing 10% fibers by                                 | 10    | L1  | CO1,2 P | PO1,2,3,4 |
|        | volume and other one by 50%. Elastic moduli for glass and epoxy                                     | 10    |     |         |           |
|        | are 72 and 3.6 GN/m <sup>2</sup> respectively.                                                      |       |     |         |           |
| e.     | List and explain the applications of composite materials in various                                 | 10    | L2  | CO1,2 P | PO1,2,3,4 |
|        | field of engineering.                                                                               |       |     |         |           |
|        | UNIT - II                                                                                           | 20    |     |         |           |
| 2 a.   | For 2-ply laminates as shown in Fig. Q2(a), determine;                                              |       |     |         |           |
|        | i) Extensional stiffness matrix                                                                     |       |     |         |           |
|        | ii) Extensional bending coupling stiffness matrix                                                   |       |     |         |           |
|        | iii) Bending stiffness matrix                                                                       | 20    | L2  | CO1,2 P | PO1,2,3,4 |
|        | Assume both the laminate have identical stiffness matrix Q as                                       |       |     |         |           |
|        | follows:                                                                                            |       |     |         |           |
|        | Г130 25 01                                                                                          |       |     |         |           |

$$Q = \begin{bmatrix} 130 & 2.5 & 0 \\ 2.5 & 10 & 0 \\ 0 & 0 & 3.5 \end{bmatrix} GPa$$

**P20MCAD251** Page No... 2

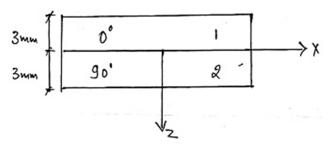
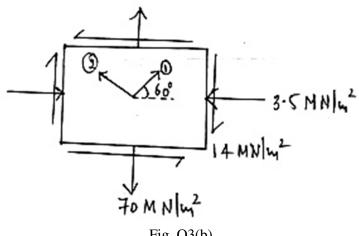



Fig. Q2(a)

**UNIT - III** 


20

Explain Tsai-Hill failure theory of a composite material.

8 L2 CO1,2 PO1,2,3,4

b. For the lamina shown in Fig. Q3(b) find the stresses along and across the fibers and strains along x and y direction.

Given  $E_1 = 14 \text{ GN/m}^2$ ,  $E_2 = 3.5 \text{ GN/m}^2$ ,  $G_{12} = 4.2 \text{ GN/m}^2$ ,  $V_{12} = 0.4$ 



L1 CO1,2 PO1,2,3,4 12

Fig. Q3(b)

OR

Explain the environmental effects on composites.

10 L2 CO1,2 PO1,2,3,4

Explain the process of manufacture of composites.

10 L2 CO1,2 PO1,2,3,4

**UNIT - IV** 

20

- What are smart materials? Briefly explain different types of smart structures.
- 10 CO3 PO1,2,4 L1
- Derive generalized piezo electric constitutive relation including thermal field.
- 10 L2 CO3 PO1,2,4

20

- Obtain an expression for beam modeling with induced strain 5 a. actuator.
- 10 L2 CO4 PO1,4

b. Explain surface mounted and embedded actuators.

10 L2 CO4 PO1,4

OR

UNIT - V

- Explain the concept of Bernoulli's Euler beam model in the context
- 20 L2 CO4 PO1,4