U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester, B.E. - Semester End Examination; October - 2022 Basic Electronic Devices and Circuits

(Common to All Branches)

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

CO1: Apply the knowledge of physics and mathematics to understand the principle of devices, number system, circuits and communication system.

CO2: Analyze the analog and digital circuits.

CO3: Design circuits for rectification, regulation, amplification and filtering.

CO4: Design the combination logic circuit.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I: PART - A	10			
1 a.	Draw the block diagram of Power Supply Unit.	2	CO1	L1	PO1
b.	List any two differences between Depletion type and Enhancement	2	CO1	L1	PO1
	type MOSFET.	2	COI	LI	POI
c.	List the Ideal Characteristics of Op-amp.	2	CO1	L1	PO1
d.	Write the 1's and 2's Complement of binary number 1101011010.	2	CO4	L2	PO2
e.	Define amplitude modulation and draw modulated signal.	2	CO2	L1	PO2
	II : PART - B	90			
	UNIT - I	18			

2 a. Determine I_1 , I_2 , and I_{D2} for the network shown in Fig. 2(a).

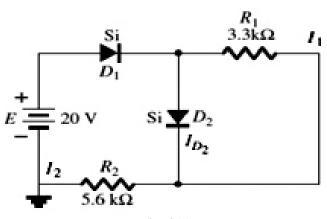


Fig. 2(a)

b. Analyze the working of Full Wave Bridge Rectifier with its
necessary circuit diagram and waveforms with ideal diode.
 9 CO2 L3 PO2
Also find the PIV of each diode.

CO₂ L₂

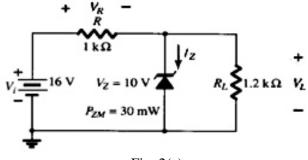
PO2

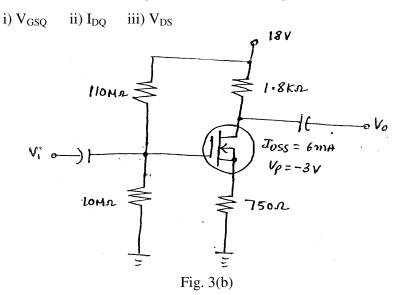
PO3

L3

CO₃

c. Determine V_L , V_R , I_Z and P_Z for the Zener diode network shown in Fig. 2(c).




Fig. 2(c)

UNIT - II

18

- 3 a. Explain the operation and characteristics n-channel
 Enhancement-type MOSFET with necessary diagrams.

 9 CO2 L2 PO2
 - b. Determine the following for the network of Fig. 3(b).

9 CO3 L3 PO3

- c. Explain the Enhancement-type MOSFET with an voltage divider configuration as an amplifier with a neat diagram and obtain the equations for the following:
- 9 CO2 L3 PO2

- i) g_m and g_{m0}
- ii) Z_i and Z_o
- iii) A_V

UNIT - III

18

- 4 a. Derive and expression for voltage gain (A_V) of an inverting Op-Amp with the help of circuit diagram and its ac equivalent 9 circuit.
 - 9 CO2 L2 PO2
 - b. Explain the following with necessary diagram and equations:
 - i) Op-Amp as an Integrator
- 9 CO2 L2 PO2
- ii) Op-Amp Summing Amplifier
- iii) Op-amp first order Low pass filter

Page No... 3 P21EC205 c. Explain the following controlled sources with required ideal diagram and circuit diagram; 9 CO₃ L₃ PO3 i) Voltage Controlled Voltage Source ii) Voltage Controlled Current Source **UNIT - IV** 18 5 a. Compute the following: i) $(1234.12)_{10} = ()_2 = ()_8 = ()_{16}$ ii) Binary Multiplication (1011)₂* (101)₂ 9 CO4 L3 PO3 iii) Perform binary subtraction using 2's compliment $(15)_{10} - (3)_{10}$ b. Design and implement the full adder using 2 half adder with 9 PO2 CO4 L4 characteristics equation for sum and carry. c. Implement the following logic gates using only NAND and NOR: i) AND 9 CO₄ L₂ PO₃ ii) OR iii) XOR UNIT - V 18 6 a. Explain Amplitude Modulation (AM) with waveforms and 9 CO₂ L2 PO2 equation along with spectrum diagram of AM wave. b. Explain super heterodyne receiver used in radio receivers with neat 9 CO₂ L2 PO2 block diagram. c. Explain the advantages and application of Optical fiber 9 CO2 L2 PO2 communication.

* * * *