
P21EE	205	Pa	ge No)]
and the second sec	P.E.S. College of Engineering, Mandya - 571 (An Autonomous Institution affiliated to VTU, Belagavi) Second Semester, B.E Semester End Examination; October Basic Electrical Engineering (Common to All Branches)			
Time: 3	3 hrs	Max. N	larks.	: 10
CO1: Ar CO2: Ill CO3: Ar CO4: Di CO5: De	lents will be able to: nalysis of single phase AC circuits. ustrate the working DC Machine as a Generator and Motor. nalyze the three phase AC circuits and explain the working of three phase induction m iscuss the working of transformer and alternator. escribe the concept of green energy and basics of power systems. PART - A is compulsory. Two marks for each question.	otor.		
II)	PART - B : Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks			
Q. No.	Questions I : PART - A	Marks 10	BLs	CC
1 a.	Calculate the power consumed by a single phase AC circuit having 55 kVA apparent power and a power factor of 0.85.	2	L1	CC
b.	Write the emf equation of a DC generator and mention the parameters in the equation.	2	L1	CO
c.	Calculate the rotor current frequency in an Induction motor, if the supply is 50 Hz and slip is 3%.	2	L1	CO
d.	The primary current of a transformer is 25 A and the transformation ratio is 0.6. Determine the secondary current.	2	L1	CO
e.	Define renewable energy sources.	2	L1	C
	II : PART - B	90		
2 a.	UNIT - I i) Explain the significance of power factor in an AC circuit.	18 3	L1	CO
	ii) Determine the current through a series circuit having 20 Ω resistance in series with a capacitor of 16.67 μ F and an inductance of 0.5 H. Also determine the power factor of the circuit. Assume a supply of 110 V,	6	L1	C
b.	50 Hz across the RLC series combination. Give a detailed analysis of RL series circuit supplied by an AC source, with relevant waveforms and phasor diagram.	9	L1	C
с.	Determine the branch currents and main current in the following circuit			

c. Determine the branch currents and main current in the following circuit Q2(c). What is the equivalent impedance between points A and B.

UNIT - II183 a.Explain the construction of DC machines with neat sketch.9L1CO2b.i) What is back emf? Explain the significance.3L1CO2ii) A four pole, lap wound DC shunt generator has a useful flux per pole of 0.08 wb. The armature winding consists of 260 turns, each of resistance 0.006 Ω. Determine the terminal voltage of the generator when it is running at 1000 rpm and supplying a load current of 55 A.6L1CO2c.i) Mention the application of DC series motor and DC shunt motor.3L2CO2ii) An 8 pole DC shunt generator has 778 wave connected conductors on its armature. While running at 500 rpm it supplies power to a load of 12.5 Ω55
 b. i) What is back emf? Explain the significance. ii) A four pole, lap wound DC shunt generator has a useful flux per pole of 0.08 wb. The armature winding consists of 260 turns, each of resistance 0.006 Ω. Determine the terminal voltage of the generator when it is running at 1000 rpm and supplying a load current of 55 A. c. i) Mention the application of DC series motor and DC shunt motor. ii) An 8 pole DC shunt generator has 778 wave connected conductors on its
 ii) A four pole, lap wound DC shunt generator has a useful flux per pole of 0.08 wb. The armature winding consists of 260 turns, each of resistance 0.006 Ω. Determine the terminal voltage of the generator when it is running at 1000 rpm and supplying a load current of 55 A. c. i) Mention the application of DC series motor and DC shunt motor. ii) An 8 pole DC shunt generator has 778 wave connected conductors on its
 0.08 wb. The armature winding consists of 260 turns, each of resistance 0.006 Ω. Determine the terminal voltage of the generator when it is running at 1000 rpm and supplying a load current of 55 A. c. i) Mention the application of DC series motor and DC shunt motor. ii) An 8 pole DC shunt generator has 778 wave connected conductors on its
 0.006 Ω. Determine the terminal voltage of the generator when it is running at 1000 rpm and supplying a load current of 55 A. c. i) Mention the application of DC series motor and DC shunt motor. ii) An 8 pole DC shunt generator has 778 wave connected conductors on its
 0.006 Ω. Determine the terminal voltage of the generator when it is running at 1000 rpm and supplying a load current of 55 A. c. i) Mention the application of DC series motor and DC shunt motor. ii) An 8 pole DC shunt generator has 778 wave connected conductors on its
 c. i) Mention the application of DC series motor and DC shunt motor. ii) An 8 pole DC shunt generator has 778 wave connected conductors on its
ii) An 8 pole DC shunt generator has 778 wave connected conductors on its
armature. While running at 500 rpm it supplies power to a load of 12.5 Ω
at 250 V. The armature and shunt field resistances are 0.24 Ω and 250 Ω 6 L2 CO2
respectively. Determine the armature current the emf induced and the
flux per pole.
UNIT - III 18
4 a. i) Derive relation between line and phase quantities in a delta connected
system. 6 L1 CO3
ii) Three equal impedances (10+j16) Ω are connected in star across a 400 V,
60 Hz supply. Determine the total power consumed by the load.
b. Three coils having impedances of $(8+j6) \Omega$ are connected;
i) Star ii) Delta, across a 440 V, 50 Hz 3 phase line. Calculate line current 9 L2 CO3
and total power consumed in each case.
c. I) Explain the construction of;
i) Slip ring rotor 6 L2 CO3
ii) Squirrel cage rotor of an induction motor
II) A 6 pole induction motor is fed from 50 Hz supply. If the frequency of 3 L2 CO3
rotor emf at full load is 2 Hz, find the full load slip and speed.
UNIT - IV 18
5 a. i) Derive the emf equation of an alternator.6L2CO4
ii) Compare the salient and non-salient rotors of an alternator. 3 L2 CO4
b. I) Derive the emf equation of a single phase transformer. 5 L1 CO4
II) A 25 kVA transformer has 500 turns on the primary and 40 turns on the
secondary winding the primary winding is connected to a 3 kV, 50 Hz
AC sources calculate; 4 L1 CO4
i) Primary and secondary current on full load
ii) The maximum flux in the core

P21EE205		Page No 3		
c. I) Write a note on the losses in a transformer.	3	L1 CO4		
II) A single phase 50 Hz transformer has 30 primary and 350 secondary				
turns the net cross sectional area of the core is 250 cm ² . If the primary	6]			
winding is connected to a 230 V, 50 Hz supply, calculate;		L1 CO4		
i) The peak value of the flux density in the core		LI CO4		
ii) Voltage induced in the secondary winding				
iii) Primary current when secondary current is 100 A				
UNIT - V	18			
6 a. With a neat diagram, explain the working of wind power plant.	9	L1 CO5		
b. i) What are circuit breakers? Give its classification.	4	L1 CO5		
ii) Explain the construction and operation of HRC fuse.	5	L1 CO5		
c. With a neat sketch, explain the pipe earthing system.	9	L2 CO5		

* * * *